
Exploring Use-cases for Non-Volatile Memories in support of HPC Resilience
Onkar	Patil,	Saurabh	Hukerikar,	Frank	Mueller,	Christian	Engelmann

Dept.	of	Computer	Science,	North	Carolina	State	University,	Computer	Science	and	Mathematics	Division,	Oak	Ridge	National	Laboratory

MOTIVATION
• Exaflop Computers	à large	number	of	compute	+	memory	devices	+	different	
forms	of	interconnects	+	cooling	and	power	equipment	à Close	Proximity
• Manufacturing	processes	used	to	make	these	devices	are	not	foolproof	

• Lower	durability	and	reliability	of	the	devices.	
• Frequency	of	device	failures	and	data	corruptions	↑à effectiveness	and	utility	↓

• Future	Applications	need	to	be	more	resilient	while	they,
• Maintain	a	balance	between	performance	and	power	consumption
• Minimize	trade-offs

• Non-volatile	memory	(NVM)	technologies	à enable	memory	devices	that	can	
maintain	state	of	computation	in	the	primary	memory	architecture
• More	potential	in	using	these	memory	devices	as	specialized	hardware	
• Data	Retention	à critical	in	improving	resilience	of	an	application	against	
crashes
• Persistent	memory	regions	to	improve	HPC	resiliency	à key	aspect	of	this	
project

PROBLEM STATEMENT

• Design	strategy	
• Enable	checkpointing at	the	data	structure	level
• Some	data	structures	are	more	critical	than	others	at	different	stages	of	the	application	in	terms	of	failure	recovery
• Reduce	the	space	and	time	overhead	considerably	in	comparison	to	traditional	checkpointing methods
• Easy	to	use	API	with	minimal	code	changes

NVM-based	Main	Memory

APPROACH
APPLICATION

STATIC	DATA	
STRUCTURES

DYNAMIC	DATA	
STRUCTURES

DRAM NVM

APPLICATION
STATIC	DATA	
STRUCTURES

DYNAMIC	DATA	
STRUCTURES

DRAM NVM

APPLICATION
STATIC	DATA	
STRUCTURES

DYNAMIC	DATA	
STRUCTURES

DRAM NVM

Application-directed	Checkpointing Data	Versioning
void	main(){
int *	a,	size;
pmem_cpy_init();
…
a=(int *)pmem_only_alloc(size);
…
pmem_cpy_free(a);
…
}

void	main(){
int *	a,	size;
pmem_cpy_init();
…
a=(int *)pmem_cpy_alloc(size);
…
pmem_cpy_update(a);
…
pmem_cpy_free(a);
…
}

void	main(){
int *	a,	size;
pmem_cpy_init();
…
a=(int *)pmem_ver_alloc(size);
…
pmem_cpy_update(a);
…
pmem_cpy_free(a);
…
}

• Experimentation	Setup
• 16-node	cluster	with	Dual	socket,	Quad-Core	AMD	Opteron,	128	GB	DRAM	memory,	Intel	
SSD	from	100GB	to	256GB
• DGEMM	benchmark	of	the	HPCC	benchmark	suite
• Tested	for	4,	8	and	16-node	configurations	for	a	matrix	sizes	of	1000,	2000	and	3000	
elements

RESULTS

0.001

0.01

0.1

1

10

4 8 16

GF
LO

PS

Nodes

GFLOPS	in	node	scaling	for	StarDGEMM DRAM
PMEM_ONLY
PMEM_CPY
PMEM_VER

0.001

0.01

0.1

1

10

4 8 16

GF
LO

PS

Nodes

GFLOPS	in	node	scaling	for	SingleDGEMM DRAM
PMEM_ONLY
PMEM_CPY
PMEM_VER

• DRAM	only	allocation	and	NVM-based	main	memory	perform	better	than	Application-
directed	Checkpointing and	Data	Versioning	partly	due	to	an	inefficient	lookup	algorithm	

• The	performance	is	consistent	for	both	Single	matrix	multiplication	and	multiple	
matrix	multiplication	operations

• All	modes	perform	similar	and	consistently	when	scaled	by	node	size	or	
problem	size

0.01

0.1

1

10

100

4 8 16

Ti
m
e(
se
c)

Nodes

Execution	times	in	node	scaling	for	StarDGEMM DRAM
PMEM_ONLY
PMEM_CPY
PMEM_VER

0.01

0.1

1

10

100

4 8 16

Ti
m
e(
se
c)

Nodes

Execution	times	in	node	scaling	for	SingleDGEMM DRAM
PMEM_ONLY
PMEM_CPY
PMEM_VER

0.0001

0.001

0.01

0.1

1

10

1000 2000 3000

GF
LO

PS

No.	of	elements

GFLOPS	for	problem	size	scaling	in	StarDGEMM DRAM
PMEM_ONLY
PMEM_CPY
PMEM_VER

0.0001

0.001

0.01

0.1

1

10

1000 2000 3000

GF
LO

PS

No.	of	elements

GFLOPS	for	problem	size	scaling	in	SingleDGEMM DRAM
PMEM_ONLY
PMEM_CPY
PMEM_VER

• The	execution	time	increases	exponentially	when	using	two	types	of	
memory	instead	of	one

0.01

0.1

1

10

100

1000

10000

1000 2000 3000

Ti
m
e(
se
c)

No.	of	elements

Execution	time	for	problem	size	scaling	in	StarDGEMM
DRAM
PMEM_ONLY
PMEM_CPY
PMEM_VER

0.01

0.1

1

10

100

1000

10000

1000 2000 3000

Ti
m
e(
se
c)

No.	of	elements

Execution	time	for	problem	size	scaling	in	SingleDGEMM DRAM
PMEM_ONLY
PMEM_CPY
PMEM_VER

• Develop	the	memory	usage	modes	to	make	them	more	efficient	and	maintain	
complete	system	state	
• Minimal	overhead
• Support	more	complex	applications

• Develop	lightweight	recovery	mechanisms	to	work	with	the	checkpointing
schemes	
• Reduce	downtime	and	rollback	time

• Combine	them	with	intelligent	policies	that	can	help	build	resilient	static	and	
dynamic	runtime	system

FUTURE WORK

• Non-volatile	memory	devices	can	be	used	as	specialized	hardware	for	improving	the	
resilience	of	the	system	and	we	demonstrated	three	potential	memory	usage	models	that	
show	consistent	performance	for	compute	intensive	workloads

• REFERENCES
• Hukerikar,	Saurabh,	and	Christian	Engelmann.	"Resilience	Design	Patterns-A	Structured	Approach	to	Resilience	at	Extreme	

Scale." arXiv preprint	arXiv:1611.02717 (2016).
• Mittal,	Sparsh,	and	Jeffrey	S.	Vetter.	"A	survey	of	software	techniques	for	using	non-volatile	memories	for	storage	and	main	

memory	systems." IEEE	Transactions	on	Parallel	and	Distributed	Systems 27.5	(2016):	1537-1550.
• Hsu,	Terry	Ching-Hsiang,	et	al.	"NVthreads:	Practical	Persistence	for	Multi-threaded	Applications." Proceedings	of	the	Twelfth	

European	Conference	on	Computer	Systems.	ACM,	2017.
• Liu,	Qingrui,	et	al.	"Compiler-directed	lightweight	checkpointing for	fine-grained	guaranteed	soft	error	recovery." High	

Performance	Computing,	Networking,	Storage	and	Analysis,	SC16:	International	Conference	for.	IEEE,	2016.
• Yang,	Shuo,	et	al.	"Algorithm-Directed	Crash	Consistence	in	Non-Volatile	Memory	for	HPC." arXiv preprint	

arXiv:1705.05541 (2017).
• Wong,	Daniel,	G.	S.	Lloyd,	and	M.	B.	Gokhale. A	memory-mapped	approach	to	checkpointing.	No.	LLNL-TR-635611.	Lawrence	

Livermore	National	Laboratory	(LLNL),	Livermore,	CA,	2013.
• Rezaei,	Arash. Fault	Resilience	for	Next	Generation	HPC	Systems.	North	Carolina	State	University,	2016.
• This	work	was	sponsored	by	the	U.S.	Department	of	Energy's	Office	of	Advanced	Scientific	Computing	Research.	This	

manuscript	has	been	co-authored	by	UT-Battelle,	LLC	under	Contract	No.	DE-AC05-00OR22725	with	the	U.S.	Department	of	
Energy.	The	United	States	Government	retains	and	the	publisher,	by	accepting	the	article	for	publication,	acknowledges	that	
the	United	States	Government	retains	a	non-exclusive,	paid-up,	irrevocable,	world-wide	license	to	publish	or	reproduce	the	
published	form	of	this	manuscript,	or	allow	others	to	do	so,	for	United	States	Government	purposes.	The	Department	of	
Energy	will	provide	public	access	to	these	results	of	federally	sponsored	research	in	accordance	with	the	DOE	Public	Access	
Plan	(http://energy.gov/downloads/doe-public-access-plan).

CONCLUSION


