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MOTIVATION
• Exaflop Computers	à large	number	of	compute	+	memory	devices	+	different	
forms	of	interconnects	+	cooling	and	power	equipment	à Close	Proximity
• Manufacturing	processes	used	to	make	these	devices	are	not	foolproof	

• Lower	durability	and	reliability	of	the	devices.	
• Frequency	of	device	failures	and	data	corruptions	↑à effectiveness	and	utility	↓

• Future	Applications	need	to	be	more	resilient	while	they,
• Maintain	a	balance	between	performance	and	power	consumption
• Minimize	trade-offs

• Non-volatile	memory	(NVM)	technologies	à enable	memory	devices	that	can	
maintain	state	of	computation	in	the	primary	memory	architecture
• More	potential	in	using	these	memory	devices	as	specialized	hardware	
• Data	Retention	à critical	in	improving	resilience	of	an	application	against	
crashes
• Persistent	memory	regions	to	improve	HPC	resiliency	à key	aspect	of	this	
project

PROBLEM STATEMENT

• Design	strategy	
• Enable	checkpointing at	the	data	structure	level
• Some	data	structures	are	more	critical	than	others	at	different	stages	of	the	application	in	terms	of	failure	recovery
• Reduce	the	space	and	time	overhead	considerably	in	comparison	to	traditional	checkpointing methods
• Easy	to	use	API	with	minimal	code	changes
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Application-directed	Checkpointing Data	Versioning
void	main(){
int *	a,	size;
pmem_cpy_init();
…
a=(int *)pmem_only_alloc(size);
…
pmem_cpy_free(a);
…
}

void	main(){
int *	a,	size;
pmem_cpy_init();
…
a=(int *)pmem_cpy_alloc(size);
…
pmem_cpy_update(a);
…
pmem_cpy_free(a);
…
}

void	main(){
int *	a,	size;
pmem_cpy_init();
…
a=(int *)pmem_ver_alloc(size);
…
pmem_cpy_update(a);
…
pmem_cpy_free(a);
…
}

• Experimentation	Setup
• 16-node	cluster	with	Dual	socket,	Quad-Core	AMD	Opteron,	128	GB	DRAM	memory,	Intel	
SSD	from	100GB	to	256GB
• DGEMM	benchmark	of	the	HPCC	benchmark	suite
• Tested	for	4,	8	and	16-node	configurations	for	a	matrix	sizes	of	1000,	2000	and	3000	
elements

RESULTS
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• DRAM	only	allocation	and	NVM-based	main	memory	perform	better	than	Application-
directed	Checkpointing and	Data	Versioning	partly	due	to	an	inefficient	lookup	algorithm	

• The	performance	is	consistent	for	both	Single	matrix	multiplication	and	multiple	
matrix	multiplication	operations

• All	modes	perform	similar	and	consistently	when	scaled	by	node	size	or	
problem	size
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• The	execution	time	increases	exponentially	when	using	two	types	of	
memory	instead	of	one
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• Develop	the	memory	usage	modes	to	make	them	more	efficient	and	maintain	
complete	system	state	
• Minimal	overhead
• Support	more	complex	applications

• Develop	lightweight	recovery	mechanisms	to	work	with	the	checkpointing
schemes	
• Reduce	downtime	and	rollback	time

• Combine	them	with	intelligent	policies	that	can	help	build	resilient	static	and	
dynamic	runtime	system

FUTURE WORK

• Non-volatile	memory	devices	can	be	used	as	specialized	hardware	for	improving	the	
resilience	of	the	system	and	we	demonstrated	three	potential	memory	usage	models	that	
show	consistent	performance	for	compute	intensive	workloads
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