a2 United States Patent

US010565037B2

ao) Patent No.: US 10,565,037 B2

Johnson et al. 45) Date of Patent: Feb. 18, 2020
(54) DATA UPDATE OF SHARED FABRIC (56) References Cited
MEMORY IN A HIGH PERFORMANCE
COMPUTING SYSTEM U.S. PATENT DOCUMENTS
. 2016/0239591 Al 8/2016 Sampath
(71) Applicant: Hewlett Packard Enterprise 2016/0283441 Al* 9/2016 Grinberg GO6F 17/16
Development LP, Houston, TX (US) 2017/0192937 A1* 7/2017 Januario GO6F 17/16
2018/0007302 Al* 12018 Meixner GO6T 1/20
(72) Inventors: Charles Johnson, San Jose, CA (US);
Mesut Kuscu, Dornach-Aschheim OTHER PUBLICATIONS
gDE)’ OI;I kar Patlli)Rall(elgh i NA?] t(Ug)A Meng et al. “Performance Modeling and Automatic Ghost Zone
ames yung.sun ark, ao, 0 Optimization for Iterative Stencil Loops on GPUs.” Jun. 2009.
(US); Harumi Kuno, Cupertino, CA ACM. ICS *09. pp. 256-265. (Year: 2009).%
(US); Robert Schreiber, Palo Alto, CA Gamell et al. “Exploring Failure Recovery for Stencil-based Appli-
(as) cations at Extreme Scales.” Jun. 2015. ACM. HPDC ’15. pp.
279-282. (Year: 2015).*
(73) Assignee: Hewlett Packard Enterprise (Continued)
Development LP, Houston, TX (US)
Primary Examiner — Nathan Sadler
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm — Hewlett Packard
patent is extended or adjusted under 35 Enterprise Patent Department
U.S.C. 154(b) by 11 days. 7) ABSTRACT
(21) Appl. No.: 15/847,067 A high performance computing system that includes a
shared fabric memory and a plurality of processors is
(22) Filed: Dec. 19, 2017 disclosed. A first processor is coupled to a local storage and
executes a first process that, in combination with other
(65) Prior Publication Data processes, causes the plurality of processors to perform
certain actions including transferring, from the shared fabric
US 2019/0187924 Al Jun. 20, 2019 memory to the local storage, a first value corresponding to
a first cell of a first set of cells and a first sweep of a stencil
(1) Int. Cl. code. The actions further include transferring, from a first
Go6l” 9/54 (2006.01) logical partition in the shared fabric memory associated with
GO6F 17/16 (2006.01) the first cell to the local storage, a second value correspond-
(52) US.CL ing to a second cell related to the first cell and not in the first
CPC ., GO6F 9/544 (2013.01); GOGF 17/16 set of cells. Further, these actions include updating, by the
(2013.01) first process, the first value based on at least the first value
(58) Field of Classification Search and the second value.

CPC o GOG6F 9/544; GO6F 17/16
See application file for complete search history.

00

20 Claims, 10 Drawing Sheets

202a
Processor
Process

204 o
A
204a /

Updated

Vatue 1

Value 2 *308

Logical
Partition

Updated e e e
Value 1

Local Storage 210

A

2173 212b

US 10,565,037 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Holewinski et al. “High-Performance Code Generation for Stencil
Computations on GPU Architectures.” Jun. 2012. ACM. ICS ’12.
pp. 311-320. (Year: 2012).*

Jean-Baptiste Besnard et al., “An MPI Halo-Cell Implementation
for Zero-Copy Abstraction,” FuroMPI ’15, Sep. 2015, pp. 1-9,
ACM.

Jiayuan Meng and Kevin Skadron, “Performance Modeling and
Automatic Ghost Zone Optimization for Iterative Stencil Loops on
GPUs,” Jun. 2009, pp. 1-10, University of Virginia.

Jongsoo Park et at, “Efficient Shared-Memory Implementation of
High-performance Conjugate Gradient Benchmark and Its Appli-
cation to Unstructured Matrices,” SC14, Nov. 2014, pp. 1-11, IEEE.
Yonghong Yan et al., “Supporting Multiple Accelerators in High-
Level Programming Models,” PMAM’15, Feb. 2015, pp. 1-11,
ACM.

“A Beginner’s Guide to High—Performance Computing,” availabe
online at <http://www.shodor.org/media/content/petascale/materials/
UPModules/beginnersGuideHPC/moduleDocument_pdf.pdf>, 49 pages.
Feb. 2014.

Bryan Carpenter, “Ghost Regions”, available online at <http://www.
hpjava.org/papers/HPJava/HPJava/node28 html>, Apr. 15, 2003, 7
pages.

Nieplocha et al., “Combining Distributed and Shared Memory
Models: Approach and Evolution of the Global Arrays Toolkit”,
Pacific Northwest National Laboratory, available online at <http://
www.ece.Isu.edu/jxr/pohll-02/papers/jarek.pdf>, 9 pages, Jul. 2002.
Wikipedia, “Stencil Code”, available online at <https://en.wikipedia.
org/w/index php?title=Stencil_code&oldid=788464700>, Jul. 1, 2017,
5 pages.

* cited by examiner

US 10,565,037 B2

Sheet 1 of 10

Feb. 18, 2020

U.S. Patent

VI "Oid

PrOT

T 2901

arol

Y01

L FAG Rty

e 0T

|

ol
i

US 10,565,037 B2

Sheet 2 of 10

Feb. 18, 2020

U.S. Patent

g1 'Oid

80T

a’q
4 £
2V
a38e1015 12207

el uu

553001 d

//f,wﬁﬁ

(49

PROT T

W01

arol

EYOT

GEOT

e E20T

00T

US 10,565,037 B2

Sheet 3 of 10

Feb. 18, 2020

U.S. Patent

9T ‘D14

20T~

3

582304

DpOT

4 ;

ay01

BYOT

GZOT e

2
>
L

US 10,565,037 B2

Sheet 4 of 10

Feb. 18, 2020

U.S. Patent

art 'oid

PrOT

STy

Gy0L

EYaL

QZOT e

e 820

US 10,565,037 B2

Sheet 5 of 10

Feb. 18, 2020

U.S. Patent

SSII0UG

P S I—

817

é
2
§ g &
a'g

2BeI035 18I0

41 °Bid

e

pyol

Y

ay0l

BT

BIAL S

e BEOT

US 10,565,037 B2

Sheet 6 of 10

Feb. 18, 2020

U.S. Patent

47 "Bl

A
582204
81T
a0t
4 Y
N
7 \
apo1 BYOT
GO

e BEGT

|

2
Q
wed

US 10,565,037 B2

Sheet 7 of 10

Feb. 18, 2020

U.S. Patent

s

V¢ "oid

90¢
STANA e71Z. 7
g \ \ 1 8881018 |2307
GMN/
~ A A = UoHILeY uonied i
i | B
| | femdon 1231807
Mw\ e & @ | 80¢ 7 8njep
|
i 7 T 8njen
RS- S Y
m 2))
|
b 4 1 eH07
4 L L
g g POE<
T 8njep
= pajepdn
| 5SB304d
m — Y
m JOSSBO0L
{ i AOUIBIN DLIGES PBIBYS : i ,,fmmom
M m s | — I
e m 7
217 B s s s o o e s - vie
007

US 10,565,037 B2

Sheet 8 of 10

Feb. 18, 2020

U.S. Patent

0gg

g¢ ‘Oid

q71z mNMN
I M
T anjeA
parepdn UoIHIiEd
jeoidon

AIOWBIN 2GRS paleYS

i

vid

4

802
e
8321015 1230
Sw/r S 18307
mmw// 7 9niEA
1 8njEA
patepdn
L 2H07
} 7
5830
J0SSE304
i
7 /fmmom
i
hhrd

U.S. Patent Feb. 18, 2020 Sheet 9 of 10 US 10,565,037 B2

Transfer, from a shared fabric memory of a high performance computing {HPC) system to
local storages of a plurality of processors of the HPC system, first data corresponding to a first
set of cells and a first sweep of a stencil code.

302

Transfer, from a first set of logical partitions in the shared fabric memory associated with the
first set of celis to the local storages, second data corresponding to a second set of cells.

304

Update, by a plurality of processes executed on the plurality of processors, the first data
based on a plurality of values including the first data and second data stored in the first set of
logical partitions.

306

Transfer, from the local storages, the updated first data to a region of the shared fabric
memory corresponding to the first set of cells and a second sweep of the stencil code.

308

Copy, from the local storages, a portion of the updated first data 1o a second set of logical
partitions in the shared fabric memory not associated with the first set of cells,

310

FIG. 3

U.S. Patent Feb. 18, 2020 Sheet 10 of 10 US 10,565,037 B2

D
{4»]
L]

|

Transfer, from a shared fabric memory of a high performance computing {HPC) system to
local storages of a plurality of processors of the HPC system, first data corresponding to a first
set of cells and a first sweep of a stencil code.

] o

Transfer, from a first set of logical partitions in the shared fabric memory associated with the
first set of cells to the local storages, second data corresponding to a second set of cells.

é 453!{”'/

Update, by a plurality of processes executed on the plurality of processors, the first data by
updating, by each of the plurality of processes, a value of the first data corresponding to a cell
of the first set of cells,

] e

Transfer, from the local storages, the updated first data to a region of the shared fabric
memory corresponding to the first set of cells and a second sweep of the stencil code.

é ~

408

Copy, from the local storages, a portion of the updated first data to a second set of logical
partitions in the shared fabric memory not associated with the first set of cells.

I e

Update a current sweep status indicator from the second sweep to a third sweep of the
stencil code.

412

FiG. 4

US 10,565,037 B2

1
DATA UPDATE OF SHARED FABRIC
MEMORY IN A HIGH PERFORMANCE
COMPUTING SYSTEM

BACKGROUND

High performance computing (HPC) systems perform
operations on large datasets, usually using massively paral-
lel processing capabilities. Often, the large dataset is too
large to be operated on at the same time, so portions of the
dataset may be operated on in stages. In some applications
that are run on HPC systems, certain portions of data are
accessed simultaneously and certain other portions of data
are accessed sequentially. Values within a portion of data
may be related to other values within other portions of data
in a way that when an operation is performed on a value, the
related values must be retrieved to perform the operation.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclo-
sure, examples in accordance with the various features
described herein may be more readily understood with
reference to the following detailed description taken in
conjunction with the accompanying drawings, where like
reference numerals designate like structural elements, and in
which:

FIGS. 1A-1F illustrate an example matrix of cells updated
using mailboxes;

FIGS. 2A-2B illustrate an example HPC system updating
values in a matrix of cells;

FIG. 3 is a flowchart illustrating an example method for
updating data of certain cells of a matrix;

FIG. 4 is a flowchart illustrating another example method
for updating data of certain cells of a matrix;

It is appreciated that certain examples described herein
have features that are in addition to or in lieu of the features
illustrated in the above-referenced figures. Certain labels
may be omitted from certain figures for the sake of clarity.

DETAILED DESCRIPTION

In some examples, high performance computing (HPC)
systems include a large shared fabric memory and a pool of
processors, each coupled to a respective local storage (e.g.
cache, RAM). In certain examples, each local storage is used
by a single respective processor. In certain other examples,
portions of a local storage are used by a single respective
processor and other portions of the local storage are shared
between multiple processors. The HPC systems may be
programmed to execute certain instructions on each value of
a large collection of data. For example, the HPC system may
execute a stencil code on a large matrix of cells. An example
stencil code updates values for each cell of the large matrix
during a sweep, which is an iteration of updating all of the
values in the matrix (in simulations of physical phenomena,
a sweep may be called a timestep, representing the advance-
ment of the simulation from a first time t to a second time
t+n; in this disclosure, “sweep” and “timestep” are used
interchangeably).

The large matrix is split into a number of subgrids that are
small enough to be processed substantially simultaneously
by the pool of processors. A first subgrid, for example, is
loaded into the local storages of the pool of processors. In
some examples, each processor updates a value for a single
cell. In some other examples, each processor executes
multiple processes, each of which updates a value for a

20

30

35

40

45

50

60

65

2

single cell. In yet other examples, each processor executes
multiple processes, each of which updates values for mul-
tiple cells.

In certain examples, the extremely large amount of data
being processed makes traditional data backup and failure
resiliency extremely inefficient or impossible. In the case of
a crash or a device failure, preservation of the status of the
system allows the application to continue from a current or
recent point of execution rather than corrupted data being
discarded and reloaded from a distantly prior checkpoint.

When an example HPC system is updating a value of a
cell from its old value to its new value, the old value of the
cell as well as old values from related cells are loaded into
local storage to be used in determining the new value. In
some examples, the related cells are the cells directly
surrounding the cell being updated. When the cell being
updated is located near the edge of a subgrid (called the
“halo region”), certain of the surrounding cells may be
located in other subgrids. Since the subgrid containing the
cell being updated is loaded into local storages and the other
subgrids containing the surrounding cells are not loaded into
the local storages, the old values of the surrounding cells on
other subgrids are passed to the local storage to be used in
determining the new value of the cell to be updated.

An example HPC system creates logical partitions in the
shared fabric memory to store values for used when updat-
ing cells in the halo region. Specifically, each logical parti-
tion is a mailbox containing packages (i.e. variable-length
pieces of data containing values of surrounding cells). The
mailbox is logically addressed to a cell in the matrix (but the
mailbox may be stored anywhere in the shared fabric
memory in relation to its addressed cell). The packages are
sent to the mailbox when the subgrids containing the sur-
rounding cells are updated, and the packages are retrieved
from the mailbox when the subgrid containing the cell to
which the mailbox is addressed is updated. Once the pack-
ages containing values from the appropriate timestep are
loaded into local memory along with the values from the
current subgrid, the process begins determining the new
value for the cell to be updated. In some examples, the new
value for the cell to be updated is determined by calculating
a mean average of the old value of the cell to be updated
along with its surrounding cells. In some other examples, the
new value for the cell to be updated is determined by
calculating a weighted average of the old value of the cell to
be updated along with its surrounding cells. The specific
algorithm for updating the value of a cell may be any
algorithm appropriate to the context.

In an example operation of an example HPC system, the
large matrix includes subgrids A and B. Each of subgrids A
and B are a two-dimensional, nine-cell square subgrid, and
subgrid A abuts subgrid B on the right side of subgrid A and
the left side of subgrid B. Each cell is numbered from 1 to
9, starting at the top left of each subgrid, resulting in a matrix
as shown in Table 1 below.

TABLE 1
Example Matrix with Subgrids A and B
A-l A2 A-3 B-1 B-2 B-3
A4 A-5 A-6 B-4 B-5 B-6
A7 A-8 A9 B-7 B-8 B-9

Referring to the above example, subgrid A is loaded into
local storages for sweep 2. The values in the cells are to be
updated from sweep 1 to sweep 2. The value of cell A-9 for

US 10,565,037 B2

3

sweep 1 is loaded into a local storage of a processor, as are
the values of surrounding cells A-5, A-6, and A-8 from
sweep 1. Then, the values of cells B-4 and B-7 from sweep
1 are retrieved from mailbox A-9 and stored in the local
storage of the processor. In some examples, both values
from cells B-4 and B-7 are contained in one package stored
in mailbox A-9. In some other examples, the value from cell
B-4 is contained in one package and the value from cell B-7
is contained in another package.

Again referring to the above example, the processor uses
the values of the cells from sweep 1 that are stored in the
local storage to determine a sweep 2 value for cell A-9. For
example, the processor sums the values of the cells and
divides by six (the number of cells) to calculate the mean
value of the cells, which is then assigned to cell A-9 as the
sweep 2 value. Then, the sweep 2 value is stored in the
shared fabric memory in a location allocated for it. The
sweep 2 value for cell A-9 is also written to mailboxes B-4
and B-7 for use when subgrid B is updated. In some
examples, all of the sweep 2 values for subgrid A are
aggregated prior to being written to the shared fabric
memory. In certain examples, subgrid A is updated through
multiple sweeps (e.g. sweep 1 to sweep 5), and only the
latest sweep is written to the shared fabric memory. In such
a case, values from multiple sweeps are stored in each
mailbox.

In some examples, mailboxes are primed with initial data
prior to the first sweep of the matrix. For example, mailbox
A-9 may contain the initial values of cells B-4 and B-7 prior
to executing the first sweep. In some other examples,
mailboxes are populated during the first sweep prior to
updating the cell values.

FIGS. 1A-1F illustrate an example matrix containing
cells, including cells in halo regions of each subgrid of cells.
FIGS. 1A-1F illustrate progression of a sweep of the stencil
code through the matrix, including passing values between
subgrids using mailboxes.

FIG. 1A illustrates matrix 100 at the start of a sweep.
Subgrids 102a¢ and 1026 each contain 12 cells, including
cells 104a and 104¢ in subgrid 102a and cells 1045 and 1044
in subgrid 1025. Each cell has been populated with a value
(not shown for unlabeled cells), with cell 104a retaining
value “A”, cell 1045 retaining value “B”, cell 104¢ retaining
value “C” and cell 104d retaining value “D.” In some
examples, the current sweep is the first sweep, and the data
in the cells represents initial data. In some other examples,
the current sweep is not the first sweep, and the data in the
cells represents data from the prior sweep. Matrix 100,
shown in FIG. 1A, is illustrated as a two-dimensional
rectangle separated into a pair of two-dimensional square
subgrids 102a and 1025. However, matrix 100 may be of
any shape and any number of dimensions as is appropriate
given the context. For example, matrix 100 may be in the
shape of a three-dimensional cylinder separated into twenty-
five cylindrical subgrids 102 in order to simulate airflow
through an example wind tunnel.

Matrix 100 is a logically contiguous data structure despite
being represented in FIG. 1A as being separated between
subgrids 102a and 1025 (separation shown by a dashed line).
In some examples, each subgrid 102 is sized so that all cells
104 of the respective subgrid 102 can be executed by the
HPC system substantially simultaneously. During a sweep,
the values of each cell 104 within each subgrid 102 are
updated based on the values determined during the prior
sweep (or based on the initial values if during the first
sweep). The values that the update is based on are values of
related cells 104 of matrix 100. In some examples, the

10

15

20

25

30

35

40

45

50

55

60

65

4

related cells 104 are the cell to be updated and the surround-
ing cells. For example, an update of cell 104c¢ is based on the
previous values of cell 104¢ as well as cells 1044, 1045,
104a, and two unlabeled cells of subgrid 102a.

When updating the values of cells 104 within the interior
of a subgrid 102, all of values the update is based on can be
obtained from the values loaded into the local storages of the
pool of processors.

However, when updating the values of cells 104 within
the halo region of the subgrid 102, some of the values the
update is based on cannot be obtained from the values
loaded into the local storages of the pool of processors.
Specifically, values from surrounding cells located in
another subgrid 102 are not loaded into the local storages. In
order to obtain the values from those surrounding cells 104,
mailboxes 106 are established in the shared fabric memory,
with each mailbox 106 addressed to a cell in a halo region
of'a subgrid 102. For example, cell 104c¢ is in the halo region
of subgrid 102a. Mailbox 106¢ is addressed to cell 104¢ (as
shown by the thick dashed line between cell 104¢ and
mailbox 106a). Similarly, Mailbox 1064 is addressed to cell
1044 of subgrid 10256. Only mailboxes 106a and 1065 are
shown in FIGS. 1A-1F for the purpose of clarity. In an
example implementation of a HPC system consistent with
this disclosure, each cell 104 in a halo region of a subgrid
102 would be associated with a mailbox 106 addressed to the
cell 104.

Mailboxes 106a and 1065 contain packages 108. Pack-
ages 108 contain values of surrounding cells 104 of the cell
104 that the mailbox 106 is addressed to. For example,
mailbox 106a, which is addressed to cell 104¢, contains a
package 108 that includes values “B” and “D” from sur-
rounding cells 1045 and 104d, respectively. In some
examples, the value from each surrounding cell 104 stored
within the mailbox 106 is stored in a package 108. In some
other examples, all values for a certain sweep are stored in
a single package 108. In yet some other examples, values
from the surrounding cells 104 are stored in packages 108
based on their respective subgrids 102. Mailboxes 106a and
1064 also contain metadata 110. In some examples, meta-
data 110 is a manifest of the packages 108 in the mailbox
106.

As shown in FIG. 1A, values of cells are stored in the
appropriate mailboxes. For example, cells 104a and 104¢ are
surrounding cells of cell 1044 and are located on a different
subgrid (subgrid 102q) than cell 1044 (subgrid 1025). This
means that cell 1044 is located in the halo region of subgrid
1025, and that cell 1044 has an associated mailbox 1065b.
The mailbox 1065, addressed to cell 104d, contains the
values from cells 104a and 104¢ (“A” and “C”, respectively)
in a package 108 that is tracked in metadata 110. When
updating the value of cell 104d, values “A” and “C” are
retrieved from mailbox 1065, value “B” is retrieved from a
local storage updating cell 1045, and value “D” is retrieved
from the local storage updating the value of cell 104d. In
certain examples, the values from cells 104a and 104¢ are
passed to mailbox 1065 by encapsulating the values in a data
structure (i.e. package 108) and executing an algorithm that
supplies the data structure to mailbox 1065 as well as
updates the metadata 110 of mailbox 1065 to reflect the
addition of the package 108. In some examples, package 108
is sent to a transfer location where a mailbox service routes
package 108 to mailbox 1064.

FIG. 1B illustrates the update of a cell of matrix 100.
Subgrid 102a is loaded into local storages for updating. Cell
104¢ is updated using local storage 112 and process 114.
Process 114 is run on a processor of a pool of processors of

US 10,565,037 B2

5

the HPC system. Local storage 112 includes value “A” from
cell 104a, which is another cell of subgrid 102a updated
substantially simultaneously to cell 104¢. In some examples,
value “A” is passed to local storage 112 from another local
storage coupled to a processor updating cell 1044. In some
other examples, process 114 accesses the local storage
coupled to the processor updating cell 104a and retrieves
value “A”. In yet other examples, both the local storage
coupled to the processor updating cell 104¢ and local
storage 112 retrieve value “A”.

Local storage 112 also includes value “C” from cell 104c.
Value “C” is the value of cell 104¢ from a previous sweep
of a stencil code (or an initial value of cell 104¢ in the case
where the current sweep is the first sweep). In some
examples, local storage 112 retrieves value “C” from the
shared fabric memory. In some other examples, all of the
values of subgrid 1024 are retrieved from the shared fabric
memory and then each value is assigned into the appropriate
local storage (e.g. value “C” to local storage 112) after being
retrieved from the shared fabric memory.

Local storage 112 further includes values “B” and “D”
from cells 1045 and 1044, respectively. These values are
retrieved from package 108 in mailbox 106a, which is
addressed to cell 104¢. In some examples, a mailbox service,
upon receiving a request for packages from a certain sweep
(in this case, the previous sweep), inspects metadata 110 to
determine which packages 108 should be forwarded to local
storage 112. For example, metadata 110 points to package
108 as a package containing values from the previous sweep,
and since package 108 is contained in mailbox 1064, which
is addressed to cell 104¢, package 108 is known to contain
prior sweep values from surrounding cells of cell 104c.

Process 114 accesses the values stored in local storage 112
and executes a set of instructions to determine the new value
for the current sweep for cell 104¢. In some examples, the
new value for cell 104c¢ is the arithmetic mean of the values
in local storage 112. However, the new value for each cell
may be calculated any way appropriate for the application.
Process 114 determines a new value C' (quotes omitted to
avoid confusion).

In FIG. 1C, subgrid 102a is updated to reflect the values
of'the current sweep. In some examples, multiple sweeps are
iterated through before the values are written to the shared
fabric memory. For example, sweep 1 is written to memory
and then the next time values are written to memory is
during sweep 5. In some examples, even when values are
written only after multiple sweeps, values from all of the
sweeps are written to the shared fabric memory.

In an example HPC system, the updates to the subgrid are
aggregated into a data structure to be written to the shared
fabric memory. Then, the updated values of the entire
subgrid are written to the shared fabric memory in one
transaction. In some other examples, process 114 writes its
value to a location in the shared fabric memory correspond-
ing to cell 104¢ and the current sweep.

In FIG. 1D, mailbox 1065 is updated with new values for
cells 104a and 104¢ from the current sweep. In some
examples, this update of mailbox 1065 occurs during the
update of subgrid 102a. In some other examples, this update
of mailbox 1065 occurs after the update of subgrid 102a¢ and
before the update of subgrid 1025. In yet other examples,
this update of mailbox 1065 occurs after the update of
subgrid 102a and subgrid 1025 to the current sweep, during
execution of instructions that are executed between sweeps.
In such examples, a current sweep indicator is incremented
as part of the executed instructions, and the stencil code
prepares to update matrix 100 to the next sweep.

10

20

25

40

45

55

6

Package 1085, containing the new values from cells 104a
and 104c, is included in mailbox 10656. Metadata 110 is
altered to indicate that values from the previous sweep
(package 108a) and values from the current sweep (package
1085) are in mailbox 1065.

In FIG. 1E, cell 1044 of subgrid 1026 of matrix 100 is
updated. Subgrid 1025 is loaded into local storages for
updating. Cell 1044 is updated using local storage 116 and
process 118. Process 118 is run on a processor of a pool of
processors of the HPC system. Local storage 116 includes
value “B” from cell 1045, which is another cell of subgrid
1024 updated substantially simultaneously to cell 104d. In
some examples, value “B” is passed to local storage 116
from another local storage coupled to a processor updating
cell 1045. In some other examples, process 118 accesses the
local storage coupled to the processor updating cell 1045
and retrieves value “B”. In yet other examples, both the local
storage coupled to the processor updating cell 1045 and
local storage 116 retrieve value “B”.

Local storage 116 also includes value “D” from cell 1044.
Value “D” is the value of cell 1044 from a previous sweep
of a stencil code (or an initial value of cell 1044 in the case
where the current sweep is the first sweep). In some
examples, local storage 116 retrieves value “D” from the
shared fabric memory. In some other examples, all of the
values of subgrid 1025 are retrieved from the shared fabric
memory and then each value is assigned into the appropriate
local storage (e.g. value “D” to local storage 116) after being
retrieved from the shared fabric memory.

Local storage 116 further includes values “A” and “C”
from cells 104a and 104c, respectively. These values are
retrieved from package 108« in mailbox 1065, which is
addressed to cell 1044. In some examples, a mailbox service,
upon receiving a request for packages from a certain sweep
(in this case, the previous sweep), inspects metadata 110 to
determine which packages 108 should be forwarded to local
storage 116. For example, metadata 110 points to package
108a as a package containing values from the previous
sweep, and since package 108a is contained in mailbox
1065, which is addressed to cell 104d, package 108a is
known to contain prior sweep values from surrounding cells
of cell 1044.

Process 118 accesses the values stored in local storage 116
and executes a set of instructions to determine the new value
for the current sweep for cell 1044. In some examples, the
new value for cell 1044 is the arithmetic mean of the values
in local storage 116. However, the new value for each cell
may be calculated any way appropriate for the application.
Process 118 determines a new value D' (quotes omitted to
avoid confusion).

In some examples, once package 108a is loaded into local
storage 116, package 108a is removed from mailbox 1065,
and reference to package 108a is removed from metadata
110. This removal of package 108a after use can occur at any
time during execution of the current sweep, or in between
sweeps.

In FIG. 1F, subgrid 1024 is updated to reflect the values
of'the current sweep. In some examples, multiple sweeps are
iterated through before the values are written to the shared
fabric memory. For example, sweep 1 is written to memory
and then the next time values are written to memory is
during sweep 5. In some examples, even when values are
written only after multiple sweeps, values from all of the
sweeps are written to the shared fabric memory.

In an example HPC system, the updates to the subgrid are
aggregated into a data structure to be written to the shared
fabric memory. Then, the updated values of the entire

US 10,565,037 B2

7

subgrid are written to the shared fabric memory in one
transaction. In some other examples, process 118 writes its
value to a location in the shared fabric memory correspond-
ing to cell 1044 and the current sweep.

FIGS. 2A-2B illustrate an example HPC system executing
a stencil code to update values of cells within a matrix.

FIG. 2A illustrates the example HPC system 200 updating
a value of a cell of the matrix. HPC system 200 includes a
pool of processors 202, including a first processor 202a. In
some examples, each processor 202 executes at least one
process 204, including a first process 204a. In the examples
of FIGS. 2A-2B, operations are shown relative to processor
202a, process 204a, and local storage 206.

Local storage 206 is coupled to processor 202a. In some
examples, local storage 206 is coupled to processor 202a,
such that no other processor 202 has access to local storage
206. In some other examples, portions of local storage 206
are coupled to processor 202a and other portions of local
storage 206 are shared between multiple processors 202. In
yet other examples, portions of local storage 206 are coupled
to process 204aq.

Local storage 206 includes first data 208 and package 210.
First data 208 includes values of cells from the subgrid
currently being updated. In some examples, first data 208
includes all of the values of the current subgrid. In some
other examples, first data 208 includes a portion of the
values of the current subgrid, and other data are stored in
other local storages to be updated by other processors 202.

First data 208 contains Value 1, a value from the prior
sweep of the stencil code for a cell of the current subgrid.
Value 1 is updated by process 204a to the current sweep. The
current sweep is represented in FIGS. 2A-2B as a diagonal
stripe fill, whereas the previous sweep is represented as a
cross-hatch fill. First data 208 is supplied from shared fabric
memory 214, which includes stripes 216. Each stripe 216
includes values of cells of a subgrid 220 of matrix 218. In
FIGS. 2A-2B, the detailed workings of shared fabric
memory 214 are not described, as they are outside the scope
of this disclosure. Also, in FIGS. 2A-2B, matrix 218 is
shown to highlight the correlation between stripes 216 and
subgrids 220.

Package 210 includes values from logical partition 212a
(also called a mailbox). These values are from related cells
to the cell being updated by process 204a. In some
examples, the value from each related cell stored within
logical partition 2124 is stored in a package 210. In some
other examples, all values for a certain sweep of the stencil
code are stored in a single package 210. In yet some other
examples, values from the related cells are stored in pack-
ages 210 based on their respective subgrids. In certain
examples, the related cells are the cells surrounding the cell
being updated. Process 204a uses Value 2 from package 210
along with Value 1 and other values to determine Updated
Value 1 for the cell to be updated. Logical partition 212a is
addressed to the cell to be updated. Logical partition 2125 is
not addressed to the cell to be updated.

Matrix 218 illustrates that the stencil code is in the middle
of a sweep. This is shown by the fact that the top two
subgrids 220 are updated to the current sweep, and the rest
of the subgrids 220 are still at the previous sweep. This is
further illustrated in the status of shared memory fabric 214,
where the top two stripes 216 are updated to the current
sweep and the rest of the stripes 216 are still at the previous
sweep. Further still, Process 204a is shown as updating
Value 1 in first data 208, which is represented as still being
at the previous sweep in FIG. 2A. As will be shown in FIG.

10

15

20

25

30

35

40

45

50

55

60

65

8

2B, first data 208 will update to the current sweep upon the
updated Value 1 replacing the previous Value 1.

FIG. 2B shows HPC system 200 updating the subgrid now
that Value 1 has been updated. Since process 204a has
written Updated Value 1 into first data 208, first data 208 is
updated to the current sweep. Updated Value 1 is also written
to logical partition 2125 as a package, indicating that the cell
updated by process 204q is a related cell to the cell that
logical partition 2126 is addressed to. Further, the cell
updated by process 204qa is not on the same subgrid as the
cell that logical partition 2125 is addressed to.

Updated first data 208 is loaded into the appropriate stripe
216. Although, for clarity’s sake, first data 208 is shown
being loaded into the same stripe 216 as it was pulled from
in FIG. 2A, first data 208 may be loaded into any appropriate
stripe 216 in shared fabric memory 214. In some examples,
first data 208 is combined with other data that was updated
by other processes 204 and processors 202 to create an
updated stripe 216 representing the subgrid 220. In some
such cases, the combined data may be held in a temporary
location prior to being loaded into the appropriate location
on shared fabric memory 214. In some other such cases,
each processor 202 loads its respective data 208 into the
appropriate location for that data on the appropriate stripe
216 of shared fabric memory 214. In some examples,
multiple sweeps of the current subgrid are executed prior to
writing the data to shared fabric memory 214, and thus
multiple stripes 216 of data are written to the shared fabric
memory 214 substantially simultaneously.

FIG. 3 is a flowchart illustrating an example method for
updating a portion of a matrix of a stencil code by a HPC
system.

Step 302 describes transferring first data from the shared
fabric memory to at least one local storage coupled to the
pool of processors of the HPC system. In some examples, a
local storage is coupled to a single processor, meaning that
no other processor has access to that local storage. In some
other examples, portions of the local storage are coupled to
the processor and other portions of the local storage are
shared between multiple processors. In yet other examples,
portions of the local storage are coupled to a single process
executing on the processor.

The first data corresponds to a first set of cells and a first
sweep of a stencil code. The stencil code sequentially
updates values stored in cells in iterations called sweeps.
Since the dataset containing all of the cells (called the
“matrix””) may be larger than could be updated by the HPC
system substantially simultaneously, the dataset is split into
subgrids. Each subgrid is small enough to be updated by the
HPC system substantially simultaneously.

Step 304 describes transferring second data from a first set
of'logical partitions in the shared fabric memory to the local
storages. The second data are additional values of cells that
are not located on the current subgrid of cells (the first set of
cells). However, these cells whose values are contained in
the second data are related cells when updating certain cells
in the first set of cells. In some examples, a cell’s related
cells are the cells that immediately surround the cell. If the
cell is located near the edge of a subgrid (called the halo
region), some of the immediately surrounding cells may be
located on another subgrid of cells. Since the first data,
having values of cells in the first set of cells, does not include
values from other subgrids, the second data supplies the
values of the immediately surrounding cells that are not
located on the first set of cells. This second data is stored in
logical partitions (called “mailboxes”) on the shared fabric
memory. Each logical partition in the first set of logical

US 10,565,037 B2

9

partitions is addressed to a respective cell of halo region of
the first set of cells. The values in each of the first set of
logical partitions are the values of the related cells to the cell
of the first set of cells that the logical partition is addressed
to.

In some examples, the second data corresponds to a single
subgrid (the second set of cells). In some other examples, the
second data corresponds to all subgrids (the second set of
cells) except the current subgrid.

Step 306 describes updating the first data based on a group
of values that includes the current first data, and the second
data. In some examples, each value in the first data is
updated using a respective group of values assembled from
the first data and the second data. In certain examples, each
value of the first data is updated to the current sweep (a
second sweep) by executing instructions to determine the
value based on the value at the prior sweep (the first sweep)
and based on the related cells’ values at the prior sweep. In
some examples, values from multiple prior sweeps are used
to calculate the updated cell value.

Step 308 describes transferring the updated first data from
the local storages to a region of the shared fabric memory
corresponding to the first set of cells and a second sweep of
the stencil code. In some examples, the region correspond-
ing to the first set of cells and the second sweep is different
from the region corresponding to the first set of cells and the
first sweep. In certain examples, the updated first data is
assembled together in a data structure prior to being trans-
ferred to the region of the shared fabric memory. In some
other examples, each processor of the HPC system transfers
a portion of the updated first data to an appropriate location
within the region of the shared fabric memory.

Step 310 describes copying a portion of the updated first
data to a second set of logical partitions in the shared fabric
memory. None of the second set of logical partitions are
addressed to any of the first set of cells. This copying of the
portion of the updated first data populates values in logical
partitions addressed to cells that are not in the first set, but
that have related cells that are in the first set of cells. For
example, a cell in a first subgrid has its updated value copied
to a logical partition addressed to a cell in a second subgrid
because the cell in the first subgrid is a related cell (e.g.
immediately surrounding) to the cell in the second subgrid.
Thus, when the second subgrid is updated to a certain sweep,
the value from the cell in the first subgrid that is used to
update the cell in the second subgrid is held in the logical
partition until used.

FIG. 4 is a flowchart illustrating another example method
for updating a portion of a matrix of a stencil code by a HPC
system.

Step 402 describes transferring first data from the shared
fabric memory to at least one local storage coupled to the
pool of processors of the HPC system. In some examples, a
local storage is coupled to a single processor, meaning that
no other processor has access to that local storage. In some
other examples, portions of the local storage are coupled to
the processor and other portions of the local storage are
shared between multiple processors. In yet other examples,
portions of the local storage are coupled to a single process
executing on the processor.

The first data corresponds to a first set of cells and a first
sweep of a stencil code. The stencil code sequentially
updates values stored in cells in iterations called sweeps.
Since the dataset containing all of the cells (called the
“matrix””) may be larger than could be updated by the HPC
system substantially simultaneously, the dataset is split into

10

15

20

25

30

35

40

45

50

55

60

65

10

subgrids. Each subgrid is small enough to be updated by the
HPC system substantially simultaneously.

Step 404 describes transferring second data from a first set
of'logical partitions in the shared fabric memory to the local
storages. The second data are additional values of cells that
are not located on the current subgrid of cells (the first set of
cells). However, these cells whose values are contained in
the second data are related cells when updating certain cells
in the first set of cells. In some examples, a cell’s related
cells are the cells that immediately surround the cell. If the
cell is located near the edge of a subgrid (called the halo
region), some of the immediately surrounding cells may be
located on another subgrid of cells. Since the first data,
having values of cells in the first set of cells, does not include
values from other subgrids, the second data supplies the
values of the immediately surrounding cells that are not
located on the first set of cells. This second data is stored in
logical partitions (called “mailboxes”) on the shared fabric
memory. Each logical partition in the first set of logical
partitions is addressed to a respective cell in the halo region
of the first set of cells. The values in each of the first set of
logical partitions are the values of the related cells to the cell
of the first set of cells that the logical partition is addressed
to.

In some examples, the second data corresponds to a single
subgrid (the second set of cells). In some other examples, the
second data corresponds to all subgrids (the second set of
cells) except the current subgrid.

Step 406 describes updating the first data based on a group
of values that includes the current first data, and the second
data. In some examples, each value in the first data is
updated using a respective group of values assembled from
the first data and the second data. In certain examples, each
value of the first data is updated to the current sweep (a
second sweep) by executing instructions to determine the
value based on the value at the prior sweep (the first sweep)
and based on the related cells’ values at the prior sweep. In
some examples, values from multiple prior sweeps are used
to calculate the updated cell value.

Step 408 describes transferring the updated first data from
the local storages to a region of the shared fabric memory
corresponding to the first set of cells and a second sweep of
the stencil code. In some examples, the region correspond-
ing to the first set of cells and the second sweep is different
from the region corresponding to the first set of cells and the
first sweep. In certain examples, the updated first data is
assembled together in a data structure prior to being trans-
ferred to the region of the shared fabric memory. In some
other examples, each processor of the HPC system transfers
a portion of the updated first data to an appropriate location
within the region of the shared fabric memory.

Step 410 describes copying a portion of the updated first
data to a second set of logical partitions in the shared fabric
memory. None of the second set of logical partitions are
addressed to any of the first set of cells. This copying of the
portion of the updated first data populates values in logical
partitions addressed to cells that are not in the first set, but
that have related cells that are in the first set of cells. For
example, a cell in a first subgrid has its updated value copied
to a logical partition addressed to a cell in a second subgrid
because the cell in the first subgrid is a related cell (e.g.
immediately surrounding) to the cell in the second subgrid.
Thus, when the second subgrid is updated to a certain sweep,
the value from the cell in the first subgrid that is used to
update the cell in the second subgrid is held in the logical
partition until used.

US 10,565,037 B2

11

Step 412 describes updating a current sweep status indi-
cator from indicating the second sweep to indicating a third
sweep of the stencil code. Once all subgrids of the matrix
have been updated to the current sweep, the current sweep
status indicator is incremented, indicating that the current
sweep (the second sweep) has finished and that the next
sweep (the third sweep) to be executed will begin once
inter-sweep instructions are executed. Inter-sweep instruc-
tions may remove temporary data used for the prior sweep,
perform backup and other resiliency operations, output data,
or perform any other task appropriate to be executed during
the inter-sweep time period. Once the inter-sweep instruc-
tions are finished executing, the next sweep begins to
execute.

Although the present disclosure has been described in
detail, it should be understood that various changes, substi-
tutions and alterations can be made without departing from
the spirit and scope of the disclosure. Any use of the words
“may” or “can” in respect to features of the disclosure
indicates that certain embodiments include the feature and
certain other embodiments do not include the feature, as is
appropriate given the context. Any use of the words “or” and
“and” in respect to features of the disclosure indicates that
embodiments can contain any combination of the listed
features, as is appropriate given the context.

Phrases and parentheticals beginning with “e.g.” and
“i.e.” are used to provide examples merely for the purpose
of clarity. It is not intended that the disclosure be limited by
the examples provided in these phrases and parentheticals.
The scope and understanding of this disclosure may include
certain examples that are not disclosed in such phrases and
parentheticals.

The invention claimed is:

1. A high performance computing (HPC) system, com-
prising:

a shared fabric memory; and

a first processor of a plurality of processors,

the first processor coupled to a local storage, and

the first processor executing a first process that, in com-

bination with other processes, causes the plurality of

processors to:

transfer, from the shared fabric memory to the local
storage, a first value corresponding to a first cell of
a first sub-grid and a first sweep of a stencil code,

transfer, from a first logical partition in the shared
fabric memory associated with the first cell to the
local storage, a second value corresponding to a
second cell of a second sub-grid of the shared fabric
memory, wherein the first sub-grid abuts the second
sub-grid, and wherein the first logical partition is
separate from the second sub-grid; and

update, by the first process, the first value based on a
plurality of values comprising:
the first value; and
the second value.

2. The HPC system of claim 1, wherein executing the first
process in combination with other processes further causes
the plurality of processors to store a copy of the updated first
value in a second logical partition in the shared fabric
memory associated with the second cell, wherein the second
logical partition is separate from the first sub-grid.

3. The HPC system of claim 1, wherein the plurality of
values further comprises a third value corresponding to a
third cell related to the first cell and in the first set of cells.

4. The HPC system of claim 1, wherein the updated first
value corresponds to a second sweep of the stencil code.

10

20

25

40

45

60

12

5. The HPC system of claim 4, wherein executing the first
process in combination with other processes further causes
the plurality of processors to, upon updating the first value,
update a current sweep status indicator from the second
sweep to a third sweep.
6. The HPC system of claim 4, wherein a plurality of
values corresponding to cells of the first sub-grid are
updated simultaneously with the first value.
7. A method, comprising:
transferring, from a shared fabric memory of a high
performance computing (HPC) system to local storages
of a plurality of processors of the HPC system, first data
corresponding to a first sub-grid of cells and a first
sweep of a stencil code;
transferring, from a first set of logical partitions in the
shared fabric memory associated with the first sub-grid
of cells to the local storages, second data corresponding
to a second sub-grid of cells, wherein the first sub-grid
abuts the second sub-grid, and wherein the first set of
logical partitions is separate from the second sub-grid;

updating, by a plurality of processes executed on the
plurality of processors, the first data based on a plural-
ity of values comprising:

the first data; and

second data stored in the first set of logical partitions;

transferring, from the local storages, the updated first data

to a region of the shared fabric memory corresponding
to the first sub-grid of cells and a second sweep of the
stencil code; and

copying, from the local storages, a portion of the updated

first data to a second set of logical partitions in the
shared fabric memory not associated with the first
sub-grid of cells.

8. The method of claim 7, wherein each of the plurality of
processes updates a single value of the first data, a value of
the first data corresponding to a cell of the first sub-grid of
cells.

9. The method of claim 7, further comprising updating a
current sweep status indicator from the second sweep to a
third sweep of the stencil code.

10. The method of claim 7, wherein each of the first set
of'logical partitions corresponds to a cell of the first sub-grid
of cells and each of the second set of logical partitions
corresponds to a cell not in the first sub-grid of cells.

11. The method of claim 10, wherein each of the cells with
a corresponding logical partition of the second set of logical
partitions is related to a cell of the first sub-grid of cells.

12. The method of claim 7, wherein the first set of logical
partitions and the second set of logical partitions are pro-
tected from process failure and memory device failure.

13. A high performance computing (HPC) system, com-
prising:

a shared fabric memory; and

a plurality of processors,

each processor of the plurality of processors coupled to a

respective local storage, and

each processor executing a respective process that, in

combination with other processes, causes the plurality

of processors to:

transfer, from the shared fabric memory to the respec-
tive local storages, first data corresponding to a first
subgrid and a first sweep of a stencil code,

transfer, from a first set of logical partitions in the
shared fabric memory associated with the first sub-
grid to the respective local storages, second data
corresponding to a second sub-grid of the shared
fabric memory, wherein the first sub-grid abuts the

US 10,565,037 B2

13

second sub-grid, and wherein the first set of logical

partitions is separate from the second sub-grid; and
update, by each respective process, a value of the first

data based on a plurality of values comprising:

the value of the first data; and

a portion of the second data.

14. The HPC system of claim 13, wherein each value of
the first data represents a cell of the first subgrid.

15. The HPC system of claim 13, wherein each updated
value of the first data corresponds to a second sweep of the
stencil code.

16. The HPC system of claim 13, wherein executing each
respective process in combination with other processes
further causes the plurality of processors to, upon updating
the value of the first data, update a current sweep status
indicator from the second sweep to a third sweep.

17. The HPC system of claim 13, wherein each value of
the first data is updated simultaneously.

18. The HPC system of claim 13, wherein the second
subgrid comprises cells related to the first subgrid.

19. The HPC system of claim 13, wherein executing each
respective process in combination with other processes
further causes the plurality of processors to store a copy of
each updated value of the first data in a second set of logical
partitions in the shared fabric memory associated with the
second subgrid.

20. The HPC system of claim 19, wherein each of the
second set of logical partitions receives a copy of at least one
updated value of the first data.

#* #* #* #* #*

20

30

14

