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1
SEQUENTIAL MEMORY ACCESS ON A
HIGH PERFORMANCE COMPUTING
SYSTEM

BACKGROUND

In certain example high performance computing (HPC)
systems, large sets of data are stored in a shared fabric
memory and are modified by processing circuitry in a
sequential pattern. The large amount of data may be stored
across multiple memory devices, and may be stored such
that if a certain proportion of the data is corrupted, it can be
restored to its original form using error correcting algo-
rithms. When modifying portions of the large sets of data,
saving the modified data in place can complicate recovering
from malfunctions of components of the HPC system. In
some HPC systems, the modified data is saved to a different
location than the original data.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclo-
sure, examples in accordance with the various features
described herein may be more readily understood with
reference to the following detailed description taken in
conjunction with the accompanying drawings, where like
reference numerals designate like structural elements, and in
which:

FIGS. 1A-1B illustrate an example HPC system updating
a stripe of data;

FIG. 2 illustrates an example relationship between a
shared fabric memory and a data matrix;

FIG. 3 illustrates an example HPC system updating a
stripe of data at an end of an address space of a shared fabric
memory;

FIGS. 4A-4B illustrate an example HPC system updating
stripes of data;

FIG. 5 is a flowchart illustrating an example method for
updating a stripe of data;

FIG. 6 is a flowchart illustrating another example method
for updating a stripe of data;

It is appreciated that certain examples of this disclosure
have features that are in addition to or in lieu of the features
illustrated in the above-referenced figures. Certain labels
may be omitted from certain figures for the sake of clarity.

DETAILED DESCRIPTION

In certain high performance computing (HPC) systems,
the system includes processing circuitry (i.e. a pool of
processors) and a shared fabric memory. The shared fabric
memory has the capacity to store large amounts of data,
often too much to be modified all at once by the processing
circuitry. In some examples, data is formatted as a matrix,
and is separated into blocks (sometimes called “subgrids™),
each of which can be modified substantially simultaneously
by the processing circuitry. The data may be stored in the
shared fabric memory in such a way that each subgrid is
stored in a different region (called a “stripe™) of the shared
fabric memory. In some examples, a portion of each stripe
(called a “memory block™) is located on each of the multiple
memory devices that comprise the shared fabric memory.
Each memory block of a stripe may be located in the same
respective location of its memory device as the other
memory blocks of the stripe.

Due to the large amount of data and the complex nature
of HPC systems, data reliability and recoverability may
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2

involve a reduced frequency of full data backups and use of
data write techniques and data storage frameworks that
provide recoverability without requiring frequent data back-
ups. For example, a HPC system can encode a data stripe in
RAID-6, including dual parity to allow recovery of data in
the case of two memory failures. An example HPC system
may also updated stripes out-of-place, writing the updated
data for a stripe to a different memory location than the
original data resided in.

In certain examples, the data stored in the shared fabric
memory is updated in a sequential manner. For instance, the
data may represent a physical region in a simulation that is
updated using a stencil code, and each update pass through
the data (called a “sweep” or a “timestep”) represents
moving from a first point in time during the simulation to a
second point in time during the simulation. Some example
HPC systems executing updates in a sequential manner may
organize the data in the shared fabric memory to reside in
successive stripes so that each successive stripe in the shared
fabric memory contains the next subgrid or subgrids to be
updated by the processing circuitry.

In certain example HPC systems, the shared fabric
memory includes a free memory gap to where the updated
data for the current subgrid being updated is written. An
example free memory gap includes a stripe location that is
kept free, with no current data stored in the stripe location.
Once the processing circuitry updates a subgrid, the resul-
tant data is written to the stripe location in the free memory
gap, and the location of the free memory gap is moved to the
next offset. Since the execution of the processing circuitry is
done in a sequential manner, the free memory gap ripples
(i.e. moves stepwise from one end of the shared fabric
memory to the opposite end) across the stripes. Once the
current sweep data of a subgrid is written to the free memory
gap, the shared memory fabric is configured so that stepping
the free memory gap to the next stripe locates the free
memory gap on a stripe including the previous sweep data
of the subgrid that was just written. Although this descrip-
tion of the operation of the free memory gap describes a
single subgrid located in a single stripe updated by a single
sweep, this disclosure contemplates the free memory gap
including any number of stripes, each stripe including any
number of subgrids, and the processing circuitry updating
data by any number of sweeps prior to writing to the shared
fabric memory.

FIG. 1A illustrates an example HPC system including a
shared fabric memory coupled to processing circuitry. HPC
system 100 includes a shared fabric memory 102 coupled to
processing circuitry 110. Shared fabric memory 102
includes memory devices 104a-e. Five memory devices are
shown in FIG. 1A, but any number of memory devices is
contemplated by this disclosure. Stripes 106a-5 are included
in shared fabric memory 102. Each stripe 106 spans across
memory devices 104a-¢, and the respective memory blocks
of each stripe 106 are located at the same offset in each
respective memory device 104. Labels of certain stripes 106
are omitted for clarity’s sake. A free memory gap 108 is
located between stripes 106a and 1065.

Processing circuitry 110 includes local storages 112 (only
one is illustrated in FIG. 1A) and processors 114, including
processor 114a coupled to local storage 112. Local storage
112 stores subgrid data 116 from stripe 1065, which includes
data portion 118a and parity portion 1185. Processor 114a
determines the data 120 based on data portion 1184 and
parity portion 118b. In some examples, shared fabric
memory 102 includes processing circuitry that preprocesses
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stripe 1064 to determine data 120 based on data portion 1184
and parity portion 1184, forwarding data 120 to local storage
112.

HPC system 100 iterates through stripes 106 to update
them to the current sweep (represented by an apostrophe in
each memory block of the stripe). Stripe 106a has been
updated to the current sweep, and free memory gap 108 has
been located where the data for the prior sweep of the
subgrid stored in stripe 106a was located. Stripe 1065 is
loaded into local storages 112 for updating. In some
examples, portions of stripe 1065 are loaded into each local
storage 112 as partial subgrid data 116, and the respective
processors 114 update each partial subgrid data 116 inde-
pendently of one another before reassembling updated data
to be written to shared fabric memory 102. In some other
examples, local storage 112 is coupled to multiple proces-
sors 114, and portions of partial subgrid data 116 is updated
by each processor 114. In yet other examples, local storage
112 stores all of stripe 1065 as subgrid data 116, and all
processors 114 retrieve their respective portions for updating
from local storage 112. In further other examples, local
storage 112 includes a portion universal to all processors 114
and a portion individual to each processor 114, and subgrid
data 116 is apportioned to each individual portion of local
storage 112 as appropriate for processors 114 to update their
respective portions of subgrid data 116. Although local
storage 112 has been described as separate from processors
114, local storage 112 may comprise multiple levels of
storage, including on-processor cache, RAM, and other
appropriate storage media. In certain examples, some pro-
cessors 114 are dedicated to tasks other than updating
portions of subgrid data 116, including assembling the
updated data into a form usable by shared fabric memory
102, calculating parity data for the updated data, monitoring
the processes running on other processors 114 for health and
completion, and other appropriate tasks.

Subgrid data 116 includes data blocks retrieved from a
first set of memory devices 104 of shared fabric memory
102. Specifically, data portion 118a is retrieved from
memory devices 104a-c. Likewise, parity blocks are
retrieved from a second set of memory devices 104 of shared
fabric memory 102. Specifically parity portion 11856 is
retrieved from memory devices 104d-e. In some examples,
data portion 118a of each stripe 106 is retrieved from the
same set of memory devices 104a-¢ and parity portion 1185
of each stripe 106 is retrieved from the same set of memory
devices 104d-e. In such examples, all parity information
1185 is stored on parity memory devices 104d-¢, and all data
information 118a is stored on data memory devices 104a-c.
In some other examples, different stripes 106 store their data
portions 118a and parity portions 1185 in different sets of
memory devices 104 relative to one another.

In examples where stripe 1065 is forwarded to local
storage 112 with parity portion 1185, processor 114a calcu-
lates data 120 based on data portion 118a and parity portion
118b. In the case where a data block has been corrupted, the
data blocks of data portion 118a, in combination with the
parity blocks of parity portion 1185, are used to determine
the uncorrupted data.

In examples where stripe 10654 is parity checked by shared
fabric memory 102 prior to loading in local storage 112, a
controller of shared fabric memory 102 calculates data 120
based on data portion 118a and parity portion 1185. In the
case where a data block has been corrupted, the data blocks
of data portion 1184, in combination with the parity blocks
of parity portion 1185, are used to determine the uncorrupted
data.
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In some examples, HPC system 100 implements RAID-6
dual parity so that up to two corrupted data blocks can be
repaired. In certain examples, the RAID-6 parity blocks are
calculated using Jerasure encoding or Reed-Solomon encod-
ing. In such examples, the canonical data (i.e. the data as
intended to be written) is able to be calculated (by process-
ing circuitry 110 in some examples and by a controller of
shared fabric memory 102 in other examples) per stripe 106.
By using RAID-6, the time and memory overhead of recov-
ering a damaged stripe 106 (whether due to data corruption
or device failure) is small.

Free memory gap 108 may contain data, but the data
contained in free memory gap 108 is not current data. In
some examples free memory gap 108 includes data from a
prior sweep of HPC system 100. Free memory gap 108 is
relocated once stripe 1065 has been updated and the updated
data is written to the current location of the free memory gap
108. The following description of an example procedure for
updating stripe 1065 references a single stripe 1065 being
updated, a single stripe-sized free memory gap 108, and free
memory gap 108 relocating in single stripe increments.
However, this disclosure contemplates any number of stripes
106 being updated substantially simultaneously, a free
memory gap 108 of any appropriate size, and a relocation of
the free memory gap 108 of any size increment.

An example HPC system 100 updates a stripe 1065 as
follows. A sweep iteration indicator keeps track of the
current sweep iteration. Prior to update, stripe 1065 is
updated to a previous sweep iteration. In some examples,
stripes 106 are updated multiple sweep iterations before the
updated data is written back to shared fabric memory 102.
In some other examples, stripes 106 are updated single
sweep iterations before the updated data is written back to
shared fabric memory 102. A first group of data blocks are
retrieved from locations on memory devices 104a-c corre-
sponding to stripe 1065. Also, a second group of parity
blocks are retrieved from locations on memory devices
104d-e corresponding to stripe 1065. In some examples, the
data blocks and the parity blocks are then transmitted to
local storage 112 of processing circuitry 110 where the
canonical data is calculated using the data blocks and the
parity blocks. In some other examples, a controller of shared
fabric memory 102 calculates the canonical data and trans-
mits the canonical data to local storage 112. Processing
circuitry 110 then updates the data and transmits updated
data including updated data blocks and updated parity
blocks to shared fabric memory 102. Shared fabric memory
102 then stores the updated data in free memory gap 108,
relocates free memory gap 108 to the location where the
previous sweep data of stripe 1065 was located, which is
adjacent to the current location of free memory gap 108, and
begins the process of updating the next stripe 106. In some
examples, stripe 1065 is the last stripe of the current sweep.
In such examples, rather than beginning the process of
updating the next stripe, the sweep iteration indicator is
incremented to the next sweep and inter-sweep instructions
may be executed. The pattern of execution is sequential,
resulting in a “ripple” of the currently updating stripe 106
and free memory gap 108 from one end of shared fabric
memory 102 to the opposing end, and on the next sweep the
ripple transits in the opposing direction.

The data blocks and the parity blocks stored on shared
fabric memory 102 are uniformly sized blocks and are
located at the same offset within their respective memory
devices 104. For example, the memory blocks (i.e. data
blocks and parity blocks) for the third stripe may be located
at an address in each memory device 104 corresponding to
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two times (2x) the uniform size of the memory blocks. In
such an example, if memory blocks are twenty (20) bytes
long, each memory block for the third stripe is located at
address forty (40) of their respective memory devices 104.

FIG. 1B illustrates HPC system 100 completing an update
of stripe 1065 and writing the updated data to shared fabric
memory 102. Original data 120, retrieved from stripe 1065,
is updated by processor 114a to updated data 122. In some
examples, each subgrid of the matrix includes cells that are
arranged in a structure (e.g. 2D rectangle, 3D cube, 3D
sphere). Data 120 includes values of each cell within the
subgrid stored in stripe 1065. In some examples, updating a
value of a cell includes calculating an average of the
surrounding cells (as defined by the structural arrangement
of'the cells) at the previous sweep. Certain cells may require
data from other stripes to compute their updated value. Such
cells located in a “halo region” of the subgrid may be
updated using data in addition to data 120, which may be
passed to processor 114a from a mailbox or any other
appropriate data structure capable of relaying cell values
from one subgrid to processing circuitry 110 while updating
values of another subgrid.

Once updated data 122 is calculated by processor 114a,
parity information is calculated and updated data 122 is
assembled into memory blocks 124, which is transmitted to
shared fabric memory 102 and written to free memory gap
108. Upon memory blocks 124 being written as stripe 106c,
free memory gap 108 is relocated to stripe 1065, which
contains the previous sweep data of the subgrid.

FIG. 2 illustrates an example relation 200 between a
shared fabric memory 202 and a cell matrix 208. Shared
fabric memory 202 includes stripes 204a-f and a free
memory gap 206. Free memory gap 206 is a stripe that is not
populated with current data, although it may include data
from previous sweeps. Fach stripe contains a number of
memory blocks corresponding to the number of memory
devices in shared fabric memory 202. In the example of FIG.
2, each stripe 204 includes five (5) memory blocks. Each
memory block is located at the same offset within each
memory device as the other memory blocks of the corre-
sponding stripe 204. For example, memory blocks of stripe
204a may start at address 0x00f4 of each respective memory
device. Each memory device is of a uniform size throughout
shared fabric memory 202. In some examples, the uniform
size is a prerequisite for restoration of corrupted data. A
memory block may be one of a data block and a parity block.
In the example of FIG. 2, three data blocks of stripe 204q are
combined with two parity blocks. In examples using RAID-
6, dual parity allows two memory failures (corruption of a
data block or parity block, or device failure) to occur and the
data to be restored from the remaining uncorrupted data.

Each stripe 204 represents a subgrid 210 of cell matrix
208. Cell matrix 208 is a data structure used in sequentially
and repetitively applying the same computation to a large set
of values. One such computation regime is a stencil code,
which applies a computation to each cell in cell matrix 208
to update the value. Each iteration of updates is called a
sweep, and the updated value of each cell for the current
sweep is calculated based on the value of the cell during a
prior sweep as well as the values of related cells during a
prior sweep. For example, the updated value of a cell may
be determined by calculating the mean of the value of the
cell at the previous sweep and the values of surrounding
cells at the previous sweep. Cell matrix 208 is separated into
subgrids 210a-e, each of which correspond to a respective
stripe 204a-e of shared fabric memory 202. Each subgrid
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210 is small enough to be updated substantially simultane-
ously by the processing circuitry of the HPC system.

As shown in the example of FIG. 2, stripes 204 are
updated sequentially, as shown by apostrophes in the
memory blocks, and the corresponding subgrid is also
shown as updated (diagonal stripes for current sweep, cross-
hatch for previous sweep). In some examples, free memory
gap 206 separates updated stripes 204a-b from not-yet-
updated stripes 204¢-f. An example process for updating the
next subgrid 210c¢ is as follows. Subgrid 210c¢ relates to
stripe 204¢, which is transmitted to the processing circuitry
of the HPC system. The processing circuitry returns the
updated data for subgrid 210c¢, which is written to free
memory gap 206. With the updated data for subgrid 210c
written to another location, stripe 204¢ is no longer relates
to subgrid 210¢ and merely contains previous sweep data.
Once the updated data is written to free memory gap 206, the
location of free memory gap 206 is moved to stripe 204c.
Then, the next subgrid to be updated is subgrid 210d, with
free memory gap 206 residing between the newly inserted
updated data for subgrid 210¢ and the previous sweep data
of subgrid 210d.

In some examples, cell matrix 208 is shaped as a two
dimensional rectangle (as shown in FIG. 2). In some other
examples, cell matrix 208 is shaped as a three dimensional
cube or a three dimensional sphere. This disclosure contem-
plates cell matrix 208 being shaped in any appropriate shape
of any number of dimensions.

FIG. 3 illustrates an example HPC system updating a
stripe. HPC system 300 includes shared fabric memory 302
and processing circuitry 308. Shared fabric memory 302
includes stripe 304 and free memory gap 306. Processing
circuitry 308 includes local storage 310 and processor 312.
Local storage 310 includes data 314 from the stripe that is
currently free memory gap 306, and sweep iteration indica-
tor 320.

The example of FIG. 3 illustrates the update of data from
a stripe of shared fabric memory 302. The original data was
retained in stripe 306 prior to the free memory gap being
moved to stripe 306. Processor 312 calculates updated data
316 based on original data 314 and also calculates parity
blocks for memory blocks 318. Since the stripe retrieved for
updating (stripe 306) is at the end of shared fabric memory
302 (which can be recognized by the movement of the free
memory gap 306 in the direction of the end of shared fabric
memory 302), HPC system 300 has completed the current
sweep (sweep X, as indicated by sweep iteration indicator
320. This is further evidenced by the status of all of the data
blocks and parity blocks of shared fabric memory 302,
which are updated to the current sweep (as indicated by the
apostrophes).

At the completion of a sweep, processor 312 (or another
processor dedicated to management of the update process)
increments sweep iteration indicator 320 from the just
completed sweep (sweep X) to the next sweep (sweep X+1).
Then, processing circuitry 308 executes an inter-sweep
instructions, such as data backups, report compilations, or
any other instructions appropriate to be executed between
sweeps of a stencil code algorithm. Upon the start of sweep
X+1, the ripple will reverse directions, and the free memory
gap 306 will traverse the shared fabric memory 302 toward
the opposite end.

FIG. 4A illustrates an example HPC system that updates
multiple stripes 404 substantially simultaneously. In contrast
to examples such as the ones in FIGS. 1A-1B, HPC system
400 processes stripes 404b-d substantially simultaneously in
processing circuitry 408 using local storages 410a-c, which
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are respectively coupled to processors 412a-c. In some
examples, stripes 404b-d are three previous sweeps (for
example, sweeps X-2, X-1, and X) of a subgrid, and
processing circuitry 408 updates and writes three current
sweeps (for example, sweeps X+1, X+2, and X+3) to free
memory gap 406a-c. In some other examples, processing
circuitry 408 is able to process three subgrids substantially
simultaneously, and each of stripes 4045-d represents a
different subgrid.

In examples such as FIGS. 1A-1B, processing circuitry
may include multiple processors and local storages, similar
to processing circuitry 408 of FIG. 4A. However, in the
operation of such examples, where only one stripe is pro-
cessed at a time, portions of the stripe are assigned to each
processor for updating. In some examples, each processor
updates one cell of the cell matrix. In some other examples,
each processor executes multiple processes, each of which
update one cell of the cell matrix. In contrast, the examples
of FIG. 4A assign a stripe to each processor, and substan-
tially simultaneously write the updated data for each stripe
404b-d to the free memory gap 406a-c.

FIG. 4B illustrates HPC system 400 writing updated data
to shared fabric memory 402. Once processors 412a-c
update the data from stripes 4045-d (in FIG. 4A), the
updated memory blocks are returned to shared fabric
memory 402 and written to free memory gap 406a-c stripes
404e-g). The free memory gap is relocated to the stripes
(stripes 404b6-d) adjacent to and following the original
location of the free memory gap. Free memory gap 406d-f
is relocated to stripes 4045-d. The updated memory blocks
(shown with apostrophes) are written to stripes 404e-g,
resulting in the end of the current sweep.

FIG. 5 is a flowchart illustrating an example method for
updating a stripe in a shared fabric memory.

In step 502, a first plurality of data blocks is retrieved
from a first set of memory devices of a shared fabric
memory. In some examples the first plurality of data blocks
are retrieved by a controller of the shared fabric memory
based on a request from processing circuitry of a HPC
system.

In step 504, a second plurality of parity blocks is retrieved
from a second set of memory devices of the shared fabric
memory. In some examples, the second plurality of parity
blocks are combined with the first plurality of data blocks in
the controller of the shared fabric memory and transmitted
to the processing circuitry of the HPC system together. In
some other examples, each of the first plurality of data
blocks and each of the second plurality of parity blocks are
individually transmitted to the processing circuitry.

In step 506, a first data is calculated from the first plurality
of data blocks and the second plurality of parity blocks. In
some examples, the first data is calculated by the controller
of the shared fabric memory. In some other examples, the
first plurality of data blocks and the second plurality of
parity blocks are transmitted to the processing circuitry to
calculate the first data. In some examples, RAID-6 logic is
used to reconstruct the first data from a corrupted first
plurality of data blocks using the second plurality of parity
blocks in combination with the first plurality of data blocks.

In step 508, the first data is transmitted from a first
location of the shared fabric memory. In some examples, the
first data is calculated on a controller of the shared fabric
memory, and transmitted to processing circuitry after being
calculated. In some other examples, first data may reside in
the first plurality of data blocks and be transmitted from their
location (the first location) to the processing circuitry.
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In step 510, updated first data is received from the
processing circuitry, wherein the updated first data includes
an updated first plurality of data blocks and an updated
second plurality of parity blocks. In some examples, the
updated first data is sent from the processing circuitry in a
format that aids the shared fabric memory in writing updated
memory blocks (e.g. the updated first plurality of data blocks
and the updated second plurality of parity blocks) to a stripe.

In step 512, the updated first data is stored in a second
location of the shared fabric memory. The second location is
adjacent to the first location. As described in other figures
(FIG. 1A, for example), the free memory gap, in some
examples, is located adjacent to the location of the original
first data (i.e. the first plurality of data blocks and the second
plurality of parity blocks). Therefore, when the updated first
data is stored in the free memory gap (the second location),
it is stored adjacent to the original first data (located at the
first location).

In step 514, the process begins again for a second data.
Second data is transmitted from a third location of the shared
fabric memory adjacent to an updated location of the free
memory gap (an updated second location). The updated
location of the free memory gap and the location of the
second data cause the execution to “ripple” through the
shared fabric memory from one end to the opposite end of
the shared fabric memory.

FIG. 6 is a flowchart illustrating another example method
for updating a stripe in a shared fabric memory.

In step 602, a first plurality of data blocks is retrieved
from a first set of memory devices of a shared fabric
memory. In some examples the first plurality of data blocks
are retrieved by a controller of the shared fabric memory
based on a request from processing circuitry of a HPC
system.

In step 604, a second plurality of parity blocks is retrieved
from a second set of memory devices of the shared fabric
memory. In some examples, the second plurality of parity
blocks are combined with the first plurality of data blocks in
the controller of the shared fabric memory and transmitted
to the processing circuitry of the HPC system together. In
some other examples, each of the first plurality of data
blocks and each of the second plurality of parity blocks are
individually transmitted to the processing circuitry.

In step 606, a first data is calculated from the first plurality
of data blocks and the second plurality of parity blocks. In
some examples, the first data is calculated by the controller
of the shared fabric memory. In some other examples, the
first plurality of data blocks and the second plurality of
parity blocks are transmitted to the processing circuitry to
calculate the first data. In some examples, RAID-6 logic is
used to reconstruct the first data from a corrupted first
plurality of data blocks using the second plurality of parity
blocks in combination with the first plurality of data blocks.

In step 608, the first data is transmitted from a first
location of the shared fabric memory. In some examples, the
first data is calculated on a controller of the shared fabric
memory, and transmitted to processing circuitry after being
calculated. In some other examples, first data may reside in
the first plurality of data blocks and be transmitted from their
location (the first location) to the processing circuitry.

In step 610, updated first data is received from the
processing circuitry, wherein the updated first data includes
an updated first plurality of data blocks and an updated
second plurality of parity blocks. In some examples, the
updated first data is sent from the processing circuitry in a
format that aids the shared fabric memory in writing updated



US 10,540,227 B2

9

memory blocks (e.g. the updated first plurality of data blocks
and the updated second plurality of parity blocks) to a stripe.

In step 612, the updated first data is stored in a second
location of the shared fabric memory. The second location is
adjacent to the first location. As described in other figures
(FIG. 1A, for example), the free memory gap, in some
examples, is located adjacent to the location of the original
first data (i.e. the first plurality of data blocks and the second
plurality of parity blocks). Therefore, when the updated first
data is stored in the free memory gap (the second location),
it is stored adjacent to the original first data (located at the
first location).

In step 614, the process begins again for a second data.
Second data is transmitted from a third location of the shared
fabric memory adjacent to an updated location of the free
memory gap (an updated second location). The updated
location of the free memory gap and the location of the
second data cause the execution to “ripple” through the
shared fabric memory from one end to the opposite end of
the shared fabric memory.

In step 616, a sweep iteration indicator is incremented
from the currently completed sweep to the next sweep. Since
the free memory gap has reached an end of the shared fabric
memory, and all stripes have been updated into the currently
completed sweep. In some examples, inter-sweep instruc-
tions are executed prior to initiating the next sweep.

Although the present disclosure has been described in
detail, it should be understood that various changes, substi-
tutions and alterations can be made without departing from
the spirit and scope of the disclosure. Any use of the words
“may” or “can” in respect to features of the disclosure
indicates that certain embodiments include the feature and
certain other embodiments do not include the feature, as is
appropriate given the context. Any use of the words “or” and
“and” in respect to features of the disclosure indicates that
embodiments can contain any combination of the listed
features, as is appropriate given the context.

Phrases and parentheticals beginning with “e.g.” and
“i.e.” are used to provide examples merely for the purpose
of clarity. It is not intended that the disclosure be limited by
the examples provided in these phrases and parentheticals.
The scope and understanding of this disclosure may include
certain examples that are not disclosed in such phrases and
parentheticals.

The invention claimed is:
1. A method, comprising:
transmitting, from a first location of a shared fabric
memory, first data comprising a first plurality of data
blocks and a second plurality of parity blocks by:
retrieving each of the first plurality of data blocks from
a first set of memory devices of the shared fabric
memory;
retrieving each of the second plurality of parity blocks
from a second set of memory devices of the shared
fabric memory; and
calculating the first data from the first plurality of data
blocks and the second plurality of parity blocks;
receiving, from a processing circuitry, updated first data,
comprising an updated first plurality of data blocks and
an updated second plurality of parity blocks;
storing the updated first data in a second location of the
shared fabric memory adjacent to the first location;
transmitting, from a third location of the shared fabric
memory adjacent to an updated second location, second
data comprising a third plurality of data blocks and a
fourth plurality of parity blocks.
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2. The method of claim 1, further comprising increment-
ing a sweep iteration indicator.

3. The method of claim 1, wherein the first location of the
shared fabric memory comprises a plurality of uniformly
sized memory blocks each located in equivalent locations on
each of a plurality of memory devices of the shared fabric
memory.

4. The method of claim 3, wherein the first plurality of
data blocks reside on a first portion of the plurality of
uniformly sized memory blocks located on the first set of
memory devices.

5. The method of claim 4, wherein the second plurality of
parity blocks reside on a second portion of the plurality of
uniformly sized memory blocks located on the second set of
memory devices.

6. The method of claim 1, wherein the second location of
the shared fabric memory is a free memory gap.

7. The method of claim 6, wherein the free memory gap
advances to an adjacent location upon the updated first data
being stored in the second location.

8. A shared fabric memory, comprising:

a plurality of memory devices coupled to a processing
circuitry, the plurality of memory devices to:
transmit, to the processing circuitry, first data compris-

ing data information and parity information, com-
prising:
retrieving the data information from a first portion of
a first plurality of memory blocks located on a first
set of the plurality of memory devices;
retrieving the parity information from a second por-
tion of the first plurality of memory blocks located
on a second set of the plurality of memory
devices;
calculating the first data from the data information
and the parity information;
receive, from the processing circuitry, updated first
data, comprising updated data information and
updated parity information;
store the updated first data in a second plurality of
memory blocks in a free memory gap of the shared
fabric memory;
advance the free memory gap of the shared fabric
memory to a third plurality of memory blocks adja-
cent to the second plurality of memory blocks.

9. The shared fabric memory of claim 8, wherein memory
blocks of the shared fabric memory, including the first
plurality of memory blocks, the second plurality of memory
blocks, and the third plurality of memory blocks, are uni-
formly sized.

10. The shared fabric memory of claim 8, wherein each
data block of the first plurality of memory blocks is located
at a uniform location on a respective memory device of the
first set.

11. The shared fabric memory of claim 8, wherein the first
data represents a sub-grid of a stencil code at a first sweep.

12. The shared fabric memory of claim 11, wherein the
updated first data represents the sub-grid of the stencil code
at a second sweep.

13. The shared fabric memory of claim 8, further com-
prising a plurality of local storages each corresponding to a
processor of the processing circuitry.

14. The shared fabric memory of claim 13, wherein
transmitting the first data further comprises transferring
portions of the first data to each of the plurality of local
storages, such that a first portion of the first data is trans-
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ferred to a local storage corresponding to a processor
executing a process that calculates an updated value for the
first portion.

15. A high performance computing (HPC) system, com-

prising:

aprocessing circuitry comprising a plurality of processors
coupled to a plurality of local storages;

a shared fabric memory comprising a plurality of memory
devices coupled to the processing circuitry to:
execute a first sweep of a stencil code by:

sequentially retrieving a plurality of data stripes,
wherein each successively retrieved data stripe of
the plurality of data stripes is adjacent to an
immediately previously retrieved data stripe;

for each retrieved data stripe, substantially simulta-
neously updating a set of values of the retrieved
data stripe;

for each retrieved data stripe, storing the updated set
of values in a free memory gap adjacent to the
retrieved data stripe;

for each retrieved data stripe, advancing the free
memory gap to an adjacent memory location; and
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incrementing a sweep status indicator from the first
sweep to a second sweep.

16. The HPC system of claim 15, wherein each of the
plurality of data stripes includes a plurality of uniformly
sized memory blocks, each located at a uniform location on
a respective memory device of the plurality of memory
devices.

17. The HPC system of claim 15, wherein each of the set
of values is updated by a respective process executed by the
processing circuitry.

18. The HPC system of claim 15, wherein the sweep
status indicator indicates a direction the free memory gap
advances through the shared fabric memory based on
whether the sweep status indicator is an even number or an
odd number.

19. The HPC system of claim 15, wherein each retrieved
data stripe contains values for a subgrid of a matrix of cells
of the stencil code.

20. The HPC system of claim 19, wherein executing the
first sweep of the stencil code comprises updating all values
of the matrix of cells from a first timestep to a second
timestep.



