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ABSTRACT 
We consider a pool of non-volatile memory shared by 

thousands of compute nodes. When a single computing 
node or memory unit fails, the remaining nodes and 
memory units may stay available, making it theoretically 
possible for long-running data processing jobs to survive 
media failure. In practice, however, customers face an all-
or-nothing choice, and often choose to avoid the 
overhead of full hardware or software protection from 
media failure and instead limit the sizes of their data 
processing jobs to those that are likely to complete 
without failure. Our solution (TxHPC) enables staged data 
processing applications to survive media failure without 
requiring full-fledged hardware or software RAID. We 
have built an as-yet-unoptimized proof-of-concept of 
our solution and describe its design and implementation, 
as well as some preliminary performance results.  

1. PROBLEM STATEMENT 
Products and prototypes such as phase-change memory, 

Hysteresis RAM, and memristors are realizing today the long-
awaited promise of persistent byte-addressable memory. 
However, like all other memories, these new devices are 
vulnerable to media failure. With traditional media such 
as hard drives, those who care about tolerance of media 
failure could turn to hardware RAID or a file system that 
provides software RAID. However, such solutions are all-
or-nothing – they require the entire storage system to pay 
the overhead of a specific distributed RAID solution — 
and today’s abundance of compute power makes that 
overhead increasingly prohibitive. 

 
Figure 1: From the application’s perspective, it 
simply uses TxHPC to load and store data 
partitions. 

* This work was done while Joe, Onkar, Mesut, and 
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Since the entire state of a high performance 

computing system (HPC) is one big hotspot for update 
on each time-step, the traditional techniques used in 
reliability and resilience for systems like databases 
with a handful of hotspots and occasional queries that 
access mostly unmodified data, will break down 
quickly for HPC systems. Checkpointing, log writing 
and replication to make the state of the system 
recoverable would require transmitting the entire state 
of the system to safe store as the time-step is 
incremented in a typical simulation. 

  
Figure 2: From TxHPC’s perspective, each data 
partition represents a stripe of RAID storage.  

2. APPROACH 
In general, TxHPC facilitates the development and 

execution of applications that run on many nodes with a 
pool of shared non-volatile memory. It allows large scale 
distributed applications that process data in stages to 
be coded in a manner completely transparent to the 
failure of both compute nodes and memory media nodes on 
the fabric, and also transparent to the tasks required to 
make the data safe and to allow the computation to 
continue across those failures. 

Figure 1 sketches the workflow of how an application would 
use TxHPC from the application’s perspective. To the 
application, its data set is stored in a persistent region of 
memory managed by TxHPC. TxHPC hands the application 
the data partition, the application processes the data, 
modifying its content, and then hands TxHPC new content for 
that partition to be stored in NVM. 

Figure 2 sketches TxHPC’s perspective. To TxHPC, each 
partition represents a stripe of RAID storage [1, 2]. Behind the 
scenes, TxHPC uses an array of persistent regions to store the 
data set redundantly. The memory fabric API is Gen-Z [3, 4]. 
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The TxHPC persistent region manager is agnostic to the 
semantics and to the layout/organization/format of partition 
contents. It is also agnostic to the parallelization of compute 
within a stripe. In turn, the application is agnostic to the 

Figure  3:   Example  storage  of  a  data  set  realized 
using 10 failure domains. 

 

actual physical data location of partitions and the 
persistence and crash recovery of the data within the 
grid/sub-grid or stripe/stripe-set. 

The fabric attached memory (FAM) devices are divided 
data blocks of fixed sizes. Data is stored on these devices in 
stripes. Each stripe consists of the data blocks from each 
device that are at a specified common offset; each stripe 
contains a single data block from each memory device and 2 
blocks from two memory devices reserved for storing parity. 
The parity is calculated for each stripe update. 

Our persistent region manager is named Tx (Transactional) 
HPC because we read the stripe from persistent memory, 
process it in DRAM, and store the updated content back to 
another place in persistent memory in a single transaction, 
thereby not updating-in-place, for crash recoverability. 

We keep stripe location(s) free before the application 
begins. Any update to the persistent memory will be 
written on these moving free stripe(s). Once the old stripe 
is written to completion onto the new stripe across the free 
stripe gap, the old stripe physical location becomes the 
leading edge of the free stripe gap. The Free Stripe Gap 
keeps moving in this fashion till it reaches the opposite 
end of the data region from where it started and only then 
back towards the end where it started. The movement of 
the Free Stripe Gap from one end to the other is called a 
time step. As the Free Stripe Gap can move only in two 
directions, all the stripes can only ever be in two 
locations. These locations are predictable based on the 
direction of Free Stripe Gap which can be easily 
maintained by a counter which is incremented at the 
end of every step. So the location of stripes can be 
either even or odd, step-wise. Figure 3 shows an example 
with 8 data blocks and 2 parity blocks per stripe. 

 

3. EXPERIMENTAL EVALUATION 
In Figure 4 we can see that execution times grow as 

the size of the dataset grows. The execution times of the 
stencil code algorithm with TxHPC and without any 
failure induced is 5x slower than the stencil code 
algorithm implemented without TxHPC. This overhead 
is due to the parity calculations for every stripe. That 
overhead is proportional to execution times of the 

stencil code algorithm for all dataset sizes. Also, the 
overhead increases when we induce failures. That 
increased overhead is due to the added cost of 
reconstructing two blocks of data per stripe. The 
execution time for recovering from two memory failures is 
10x slower than the stencil code running without TxHPC. 

 
Figure 4: Runtime overhead 

4. RELATED WORK 
To our knowledge, although there are persistent memory 

programming approaches that provide data processing 
applications resilience against process failure or node 
failure, and although there are NVM storage systems that 
can protect against media failure, no other persistent 
region manager provides regions of persistent memory that 
can survive media failure. 

The advent of byte-addressable persistent memory blurs 
the line between data management systems, programming 
languages, and file systems as programming language [5], 
storage system [6], and operating system [7] researchers all 
address the problem of how to ensure the consistency data 
stored in persistent regions in the face of failure. 

 
 

Figure 5: To our knowledge, only TxHPC protects 
data in individual persistent regions from media 
failure. 
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