
Persistent Regions that Survive NVM Media Failure

Onkar Patil
∗

Department of Computer
Science

North Carolina State
University

opatil@ncsu.edu
Charles Johnson

HPE Nonstop Research,
Palo Alto, CA 94304

One size does not fit all

Mesut Kuscu *
Technical University Munich
mesut.kuscu@hpe.com

Joseph Tucek *
Amazon

Palo Alto, CA 94304

Tuan Tran *
UC Santa Cruz

 atran18@ucsc.edu

Harumi Kuno
Hewlett Packard Labs
Palo Alto, CA 94304

 charles.s.johnson@hpe.com tucekj@amazon.com harumi.kuno@hpe.com

ABSTRACT
We consider a pool of non-volatile memory shared by

thousands of compute nodes. When a single computing
node or memory unit fails, the remaining nodes and
memory units may stay available, making it theoretically
possible for long-running data processing jobs to survive
media failure. In practice, however, customers face an all-
or-nothing choice, and often choose to avoid the
overhead of full hardware or software protection from
media failure and instead limit the sizes of their data
processing jobs to those that are likely to complete
without failure. Our solution (TxHPC) enables staged data
processing applications to survive media failure without
requiring full-fledged hardware or software RAID. We
have built an as-yet-unoptimized proof-of-concept of
our solution and describe its design and implementation,
as well as some preliminary performance results.

1. PROBLEM STATEMENT
Products and prototypes such as phase-change memory,

Hysteresis RAM, and memristors are realizing today the long-
awaited promise of persistent byte-addressable memory.
However, like all other memories, these new devices are
vulnerable to media failure. With traditional media such
as hard drives, those who care about tolerance of media
failure could turn to hardware RAID or a file system that
provides software RAID. However, such solutions are all-
or-nothing – they require the entire storage system to pay
the overhead of a specific distributed RAID solution —
and today’s abundance of compute power makes that
overhead increasingly prohibitive.

Figure 1: From the application’s perspective, it
simply uses TxHPC to load and store data
partitions.

* This work was done while Joe, Onkar, Mesut, and
Tuan were at Hewlett Packard Labs.

Since the entire state of a high performance

computing system (HPC) is one big hotspot for update
on each time-step, the traditional techniques used in
reliability and resilience for systems like databases
with a handful of hotspots and occasional queries that
access mostly unmodified data, will break down
quickly for HPC systems. Checkpointing, log writing
and replication to make the state of the system
recoverable would require transmitting the entire state
of the system to safe store as the time-step is
incremented in a typical simulation.

Figure 2: From TxHPC’s perspective, each data
partition represents a stripe of RAID storage.

2. APPROACH
In general, TxHPC facilitates the development and

execution of applications that run on many nodes with a
pool of shared non-volatile memory. It allows large scale
distributed applications that process data in stages to
be coded in a manner completely transparent to the
failure of both compute nodes and memory media nodes on
the fabric, and also transparent to the tasks required to
make the data safe and to allow the computation to
continue across those failures.

Figure 1 sketches the workflow of how an application would
use TxHPC from the application’s perspective. To the
application, its data set is stored in a persistent region of
memory managed by TxHPC. TxHPC hands the application
the data partition, the application processes the data,
modifying its content, and then hands TxHPC new content for
that partition to be stored in NVM.

Figure 2 sketches TxHPC’s perspective. To TxHPC, each
partition represents a stripe of RAID storage [1, 2]. Behind the
scenes, TxHPC uses an array of persistent regions to store the
data set redundantly. The memory fabric API is Gen-Z [3, 4].

mailto:opatil@ncsu.edu
mailto:mesut.kuscu@hpe.com

The TxHPC persistent region manager is agnostic to the
semantics and to the layout/organization/format of partition
contents. It is also agnostic to the parallelization of compute
within a stripe. In turn, the application is agnostic to the

Figure 3: Example storage of a data set realized
using 10 failure domains.

actual physical data location of partitions and the
persistence and crash recovery of the data within the
grid/sub-grid or stripe/stripe-set.

The fabric attached memory (FAM) devices are divided
data blocks of fixed sizes. Data is stored on these devices in
stripes. Each stripe consists of the data blocks from each
device that are at a specified common offset; each stripe
contains a single data block from each memory device and 2
blocks from two memory devices reserved for storing parity.
The parity is calculated for each stripe update.

Our persistent region manager is named Tx (Transactional)
HPC because we read the stripe from persistent memory,
process it in DRAM, and store the updated content back to
another place in persistent memory in a single transaction,
thereby not updating-in-place, for crash recoverability.

We keep stripe location(s) free before the application
begins. Any update to the persistent memory will be
written on these moving free stripe(s). Once the old stripe
is written to completion onto the new stripe across the free
stripe gap, the old stripe physical location becomes the
leading edge of the free stripe gap. The Free Stripe Gap
keeps moving in this fashion till it reaches the opposite
end of the data region from where it started and only then
back towards the end where it started. The movement of
the Free Stripe Gap from one end to the other is called a
time step. As the Free Stripe Gap can move only in two
directions, all the stripes can only ever be in two
locations. These locations are predictable based on the
direction of Free Stripe Gap which can be easily
maintained by a counter which is incremented at the
end of every step. So the location of stripes can be
either even or odd, step-wise. Figure 3 shows an example
with 8 data blocks and 2 parity blocks per stripe.

3. EXPERIMENTAL EVALUATION
In Figure 4 we can see that execution times grow as

the size of the dataset grows. The execution times of the
stencil code algorithm with TxHPC and without any
failure induced is 5x slower than the stencil code
algorithm implemented without TxHPC. This overhead
is due to the parity calculations for every stripe. That
overhead is proportional to execution times of the

stencil code algorithm for all dataset sizes. Also, the
overhead increases when we induce failures. That
increased overhead is due to the added cost of
reconstructing two blocks of data per stripe. The
execution time for recovering from two memory failures is
10x slower than the stencil code running without TxHPC.

Figure 4: Runtime overhead

4. RELATED WORK
To our knowledge, although there are persistent memory

programming approaches that provide data processing
applications resilience against process failure or node
failure, and although there are NVM storage systems that
can protect against media failure, no other persistent
region manager provides regions of persistent memory that
can survive media failure.

The advent of byte-addressable persistent memory blurs
the line between data management systems, programming
languages, and file systems as programming language [5],
storage system [6], and operating system [7] researchers all
address the problem of how to ensure the consistency data
stored in persistent regions in the face of failure.

Figure 5: To our knowledge, only TxHPC protects
data in individual persistent regions from media
failure.

5. REFERENCES

 [1] J. Plank, K. Greenan, and E. L. Miller. Screaming fast galois field
arithmetic using intel simd extensions. In Proceedings of the 11th
Conference on File and Storage Systems (FAST 2013), Feb. 2013.

[2] J. S. Plank and K. M. Greenan. Jerasure: A library in c facilitating
erasure coding for storage applications–version 2.0. Technical report,
Technical Report UT-EECS-14-721, University of Tennessee, 2014.

 [3] Gen-Z Core Messaging Presentation.
http://genzconsortium.org/wp-content/uploads/2016/05/Gen-Z-
Consortium-Briefing-Deck_Final.pdf

 [4] Gen-Z Introduction and Executive Summary
http://genzconsortium.org/wp-content/uploads/2016/11/Gen-Z-
Overview-V1.pdf

 [5] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari.
Atlas: Leveraging locks for non-volatile memory consistency. In
Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA
’14, pages 433–452, New York, NY, USA, 2014. ACM.

[6] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp,
R. K. Gupta, R. Jhala, and S. Swanson. NV-Heaps: Making
Persistent Objects Fast and Safe with Next-generation, Non-
volatile Memories. SIGPLAN Not., 46(3):105–118, Mar. 2011.

[7] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight
persistent memory. SIGPLAN Not., 47(4):91–104, Mar. 2011.

http://genzconsortium.org/wp-content/uploads/2016/05/Gen-Z-Consortium-Briefing-Deck_Final.pdf
http://genzconsortium.org/wp-content/uploads/2016/05/Gen-Z-Consortium-Briefing-Deck_Final.pdf
http://genzconsortium.org/wp-content/uploads/2016/11/Gen-Z-Overview-V1.pdf
http://genzconsortium.org/wp-content/uploads/2016/11/Gen-Z-Overview-V1.pdf

	Joseph Tucek *
	1. PROBLEM STATEMENT
	Figure 1: From the application’s perspective, it simply uses TxHPC to load and store data partitions.
	Figure 2: From TxHPC’s perspective, each data partition represents a stripe of RAID storage.

	2. APPROACH
	Figure 3: Example storage of a data set realized using 10 failure domains.

	3. EXPERIMENTAL EVALUATION
	Figure 4: Runtime overhead

	4. RELATED WORK
	Figure 5: To our knowledge, only TxHPC protects data in individual persistent regions from media failure.

	5. REFERENCES

