ONKAR PATIL

Research Staff Member IBM Research Labs, Almaden, California February 15, 1990 3682 Rollingside Dr San Jose CA 95148 opatil@ncsu.edu, +1(669)-265-5086

2016 - 2021

2012 - 2014

2008 - 2012

Personal Statement

I am a motivated and passionate individual with a zest for research in High Performance Computing. My primary interest lie in Memory architectures, Compilers, Programming Languages and System Software.

Skills

Programming/Scripting Languages C, C++, Java, HTML, Python, Perl, Shell

Platforms/Architecturesx86, Power9, Intel Optane DC, KNL, ARM9, NVIDIA TeslaToolsMPI, CUDA, OpenMP, OpenACC, MATLAB, GDB, qOp

CompilersCetus, OpenARC, LLVM, ClangOperating SystemsLinux, EV3RT, XINU, ONTAP

Education

Ph.D. Computer Science GPA: 3.182

North Carolina State University, Raleigh, NC

 Thesis: Assessing the Performance of and Devising Optimization Strategies for Heterogeneous Memory under HPC Workloads

MS. Computer Science GPA: 3.125

North Carolina State University, Raleigh, NC

- Thesis: Efficient and Lightweight Inter-process Collective Operations for Massive Multi-core Architectures

BE. Information Technology Avg: 69.2%

Fr. Conceicao Rodrigues College of Engineering, Mumbai, MH, India

- Thesis: Design and Implementation of a Parallelized and Distributed Web Crawler

Publications

_	NVM-based energy and cost efficient HPC clusters	MEMSYS 2021
•	O. Patil, L. Ionkov, J. Lee, F. Mueller, M. Lang	Sept. 2021
	PEARS: A Performance-Aware Static and Dynamic Framework for Heterogeneous Memory	MEMSYS 2021
	O. Patil, F. Mueller, L. Ionkov, J. Lee, M. Lang	Sept. 2021
_	Symbiotic HW Cache and SW DTLB Prefetching for DRAM/NVM Hybrid Memory	MASCOTS 2020
•	O. Patil, F. Mueller, L. Ionkov, J. Lee, M. Lang	Nov. 2020
	Performance characterization of a DRAM-NVM hybrid memory architecture	MEMSYS 2019
•	for HPC applications using Intel Optane DC Persistent Memory Modules	
	O. Patil, L. Ionkov, J. Lee, F. Mueller, M. Lang	Sept. 2019
_	End-to-end Resilience for HPC Applications (GCS Award)	ISC 2019
•	A. Rezai, H. Khetawat, O. Patil, F. Mueller, P. Hargrove, E. Roman	Jun. 2019
	Efficient & Predictable Group Communication Messaging over Manycore NoCs	ISC 2016
•	K. Yagna, O. Patil, F. Mueller	May. 2016
•	Persistent Regions that Survive NVM Media Failure	NVM 2017
	O. Patil, M. Kuscu, T. Tran, C. Johnson, J. Tucek, H. Kuno	Mar. 2017
_	Sequential memory access on a high performance computing system	USPTO
•	C. Johnson, O. Patil, M. Kuscu, T. Tran, J. Tucek, H. Kuno, M. Chabbi, W. Scherer	Jan. 2020

USPTO

C. Johnson, M. Kuscu, O. Patil, J. H. Park, H. Kuno, R. Schreiber

Feb. 2020

Research/Work Experience

Research Staff Member

IBM Research, Almaden, CA

Memory and Storage Systems Research

Aug. 2021 - Current

- Developing software platforms and programming support for heterogeneous memory systems enabled by CXL protocol, PGAS architecture models and active storage systems

High Performance Computing with Heterogeneous memory systems

NCSU, Raleigh, NC

Ph.D candidate and Graduate Research Assistant under Dr. Frank Mueller

Aug. 2016 - 2021

- Performed static code analysis to enable automated memory allocation at runtime to improve performance and supplement HW/SW symbiotic prefetching techniques for heterogeneous memory
- Developed a macro-based framework for HPC workloads in order to optimize HPC applications at a finer granularity for systems with multiple memory technologies

Visiting Student Researcher

Argonne National Laboratory, Lemont, IL

Computer Science Research

Jan. 2021 - June. 2021

- Explored use cases and framework designs for extending heterogeneous memory support to OpenSHMEM

Summer Research Intern

New Mexico Consortium(LANL), Los Alamos, NM

Computer Science Research

May. 2018/2019/2020 - Aug. 2018/2019/2020

- Analyzed the performance characteristics of Intel's Optane DC PMMs in a DRAM-NVM hybrid memory system for HPC applications
- Developed a Compiler framework to identify critical code information for HPC applications to optimize for hybrid memory systems

Summer Research Intern

Oak Ridge National Laboratory, Oak Ridge, TN

Computer Science Research

May. 2017 - Aug. 2017

- Designed, prototyped and evaluated a Runtime system to support Resilience Design Patterns for systems with persistent memory

Graduate Teaching Assistant

North Carolina State University, Raleigh, NC

Department of Computer Science

Jan. 2018 - May. 2018; Aug. 2016 - Dec. 2016

- Assisted in organizing curriculum and syllabus for a seminar in Quantum Computing
- Assisted in organizing and grading Paper reviews and talks for Advanced Distributed Systems
- Assisted in organizing the Operating systems course for undergraduate students

Research Associate

Hewlett Packard Labs, Palo Alto, CA

Software and Data Analytics

May 2016 - Aug. 2016

- Designed and Developed a framework for HPC Stencil applications to survive hardware failures in non-volatile memory systems with large pool of byte-addressable non-volatile memory

Member of Technical Staff-II

NetApp Inc., Sunnyvale, CA

Engineering Product Support

Aug. 2014 - May 2016

- Provided solutions and code fixes for existing bugs related to External Authentication, CIFS, WAFL, OS, NAS

Pico/micro kernels for a scalable Multi-core Operating System

NCSU, Raleigh, NC

Graduate Research Assistant under Dr. Frank Mueller

May. 2013 - May. 2014

- Developed and implemented pico-kernels for efficient point-to-point and collective inter-process communication avoiding contention and exploiting the shared memory architecture to achieve optimal performance up to 9x times other libraries

Awards and Scholarships

Summer Graduate Merit Award (GMA)

May 2021

North Carolina State University, College of Engineering

May 2019 Gauss Award

ISC 2019